4210
S. Calad et al. / Tetrahedron Letters 52 (2011) 4207–4210
5. (a) Malanga, C.; Menicagli, R.; Pecunioso, A.; Lardicci, L. Gazz. Chim. Ital. 1991,
121, 17–20; (b) Ito, H.; Taguchi, T.; Hanzawa, Y. Tetrahedron Lett. 1993, 34,
7639–7640.
A.; Lachowicz, J. E.; Morgan, C. A.; Varty, G. B.; Shih, N.-Y. Bioorg. Med. Chem.
Lett. 2006, 16, 3859–3863; (c) Trost, B. M.; Xie, J. J. Am. Chem. Soc. 2006, 128,
6044–6045; (d) Verniest, G.; Colpaert, J.; Toernroos, K. W.; De Kimpe, N. J. Org.
Chem. 2005, 70, 4549–4552; (e) Neudeck, H.; Brinker, U. H. Tetrahedron Lett.
2005, 46, 1893–1895; For examples of dechlorination with cyclobutanones
possessing a C3 leaving group providing high yields see: (f) Darses, B.; Greene,
A. E.; Coote, S. C.; Poisson, J.-F. Org. Lett. 2008, 10, 821–824; (g) Ferguson, A. C.;
Adlington, R. M.; Martyres, D. H.; Rutledge, P. J.; Cowley, A.; Baldwin, J. E.
Tetrahedron 2003, 59, 8233–8243; (h) Ambrosio, J. C. L.; Santos, R. H. De A.;
Correia, C. R. D. J. Braz. Chem. Soc. 2003, 14, 27–38; For examples of low yielding
dechlorination of cyclobutanones possessing a C3 leaving group see: (i) Wang,
C.; Zhen, Z.; Zhao, J.; Dowd, P. Synth. Commun. 1999, 29, 631–643; (j) Dehmlow,
E. V.; Bueker, S. Chem. Ber. 1993, 126, 2759–2763; (k) Redlich, H.; Lenfers, J. B.;
Kopf, J. Angew. Chem. 1989, 101, 764–765.
6. Nemoto, H.; Fukumoto, K. Synlett 1997, 863–875.
7. (a) Paquette, L. A.; Sugimura, T. J. Am. Chem. Soc. 1986, 108, 3841–3842; (b)
Kocovsky, P.; Srogl, J. J. Org. Chem. 1992, 57, 4565–4567; (c) Weignes, K.;
Schmidbauer, S. B.; Schick, H. Chem. Ber. 1994, 127, 1305–1309; (d) Kocozsky,
P.; Srogl, J.; Pour, M.; Gogoll, A. J. Am. Chem. Soc. 1994, 116, 186–197.
8. (a) Tidwell, T. T. Eur. J. Org. Chem. 2006, 563–576. and references cited therein;
(b) Matsushita, S.; Shimizu, I.; Toyoda, H.; Tanaka, A. US Patent No. US6331653
B1, 2001.
9. The successful use of vinyl acetate in the [2+2] cycloaddition with
trichloroacetyl chloride and Zn°/Cu°-couple has previously been
demonstrated, see: Danheiser, R. L.; Savariar, S.; Cha, D. Org. Synth. 1993, Coll.
Vol. 8, 82–87. however the large amounts of Zn° required for the cycloaddition
and concomitant dechlorination reactions in addition to very low yields for the
dechlorination made this route undesirable.
10. The b-keto N-acyliminium intermediates formed in entries c and d rapidly
deprotonate to give acylated products 4c/d. These results coupled with the
results from entries e–i, Table 1 indicate that a step-wise mechanism is most
likely operative. Separate experiments in which isolated 5 was resubjected to
the reaction conditions failed to provide any of the acyclic acylated material 4.
11. Sieja, J. B. J. Am. Chem. Soc. 1971, 93, 130–136.
15. Swallen, L. C.; Boord, C. E. J. Am. Chem. Soc. 1930, 52, 651–660.
16. See for example: Takuma, Y.; Kasuga, Y.; Watanabe, Naoyuki; Lin, Shu-Su
(Mitsubishi Chemical Corp., Japan) Jpn. Patent JP 2002249454 A, 2002.
17. (a) Bhar, S.; Ranu, B. C. Org. Prep. Proced. Int. 1996, 28, 371–409; (b) Harada, T.;
Kita, K.; Oku, A. Tetrahedron Lett. 1982, 23, 681–684; (c) Ganem, B.; Small, V. R.,
Jr. J. Org. Chem. 1974, 39, 3728–3730; (d) Bhar, S.; Ranu, B. C. J. Org. Chem. 1995,
60, 745–747; (e) Gupta, M. K.; Reddy, B. V. S.; Reddy, K.; Yadav, J. S. Tetrahedron
Lett. 2005, 46, 8493–8495.
18. Results were general for any reaction utilizing chloroacetyl chloride, an amine
base, and an alkyl vinyl ether.
12. Stirring the reaction mixture with a slight excess of base leads to complete
epimerization to the trans isomer in <1 h; storing the cycloadducts neat leads
to complete epimerization over time (ꢀ1 week).
19. Yields based on solution assays. Reaction profile by GC and 1H NMR showed
slightly higher impurity profiles compared to reactions using NMM as the base.
Other bases screened include Et3N, N,N,N0,N0-tetramethyl-1,3-propanediamine,
pyridine, Et3N/pyridine, DABCO, (ꢁ)-Sparteine, and DBU.
13. Acyclic enone 4e–g was purged following chlorine removal (vida infra) by
washing with 3 N HCl.
14. For examples of 2,2-dichlorocyclobutanones with no C3 leaving group see: (a)
Baldwin, J.; Leber, P. A.; Powers, D. C. J. Am. Chem. Soc. 2006, 128, 10020–10021;
(b) Wrobleski, M. L.; Reichard, G. A.; Paliwal, S.; Shah, S.; Tsui, H.-D.; Duffy, R.
20. Yields were found to be comparable, but the cis/trans ratio favored the kinetic
product by ꢀ60:40. See Ref. 4.