6884
A. Goeminne et al. / Tetrahedron Letters 51 (2010) 6882–6885
O
Br
N
Br
N
X
R2
Method B
X
1-3
N
N
N
N
R1
N
N
N
R1
18e n = 1
15
18f
n = 2
n = 3
21
5f X = OH
20 X = OAc (100%)
X = OAc (84%)
Ac2O, Et3N,
DMAP
K2CO3,
MeOH / H2O
18g
15f X = OH (87%)
H
Scheme 5. Formation of 15f (entry 10, Table 1).
Method E
H , Br
R2 = (CH2)1-3OH
Method A , B
R2
5h into 16h using Method C returned mostly starting material
(not shown) and the reaction was repeated using H2SO4 and heat-
ing to 50 °C (Method D) to give 16h in reasonable yield (55%).
We next extended the principle of using independent sources of
acid and nucleophile to co-cyclization reactions of substrates bear-
ing tethered nucleophiles. Thus, treatment of 5e–g with MeSO3H
in dichloromethane (Method E) produced compounds 18e–g in
good yields (66–80%) (entries 20–22, Table 1). However, in the case
of 18g, the product rapidly hydrolyzed to give 16g upon chroma-
tography (silica gel or neutral alumina) and 18g could only be ob-
tained in a semi-pure, crude form.
In conclusion, 2-(alkynylphenyl)triazenes 5 represent conve-
nient and effective substrates in modified Richter reactions giving
chemoselective access to 4-bromocinnoline, cinnolinones, ring-
fused cinnolines, and indazoles. Further investigation of the scope
and limitations of this co-cyclization process is currently
underway.
N
R1
N
N
5
H , H2O
Method C , D
H , H2O
Method C
R2 = EDG
OMe
O
O
R2
N
N
N
R1
N
H
H
16
17c
Scheme 4. Cyclization of 2-alkynylaryl triazenes 5 under different conditions (see
Table 1).
Acknowledgment
Table 1
Cyclization of triazenes 5 (Scheme 4)
This work was supported by an Australian Research
Council Linkage Grant (LP0562615) and Bionomics Pty Ltd (www.
Entry
5
R1
R2
Methoda
Product (yield %)
1
2
3
5a
5b
5c
H
H
H
n-Pr
Ph
4-MeOC6H4
A
A
A
15a (95)
15b (94)
15c (10),
17c (55)
15d (98)
15e (92)
15f (10),
18f (54)
15g (86)
15h (21),
16h (63)
15e (95)
15f (66)
15h (99)
16a (86)
16b (73)
17c (72)
16d (83)
16e (61)
16f (68)
16g (83)
16h (55)
18e (66)
18f (68)
18g (80)c
Supplementary data
4
5
6
5d
5e
5f
OMe
H
H
n-Pr
(CH2)2OH
(CH2)3OH
A
A
A
Supplementary data (experimental details and copies of 1H
NMR and 13C NMR spectra for all other compounds) associated
with this article can be found, in the online version, at
7
8
5g
5h
H
H
(CH2)4OH
CH2O–(3-MeOC6H4)
A
A
9
10
11
12
13
14
15
16
17
18
19
20
21
22
5e
5f
H
H
H
H
H
H
OMe
H
H
H
H
H
H
(CH2)2OH
(CH2)3OH
CH2O–(3-MeOC6H4)
n-Pr
B
Bb
B
C
C
C
C
C
C
C
D
E
References and notes
5h
5a
5b
5c
5d
5e
5f
5g
5h
5e
5f
1. For reviews on cinnolines, see: (a) Vinogradova, O. V.; Balova, I. A. Chem.
Heterocycl. Compd. 2008, 44, 501–522; (b) Simpson, J. C. E. Condensed
Pyridazine and Pyrazine Rings. The Chemistry of Heterocyclic Compounds In
Weisberg, A., Ed.; Interscience: New York, London, 1953. p 3; (c) Singerman, G.
M. In The Chemistry of Heterocyclic Compounds; Castle, R. N., Ed.; Interscience:
New York, 1973; Vol. 27,. p 1 (d) Leonard, N. J. Chem. Rev. 1945, 37, 269; (e)
Jacobs, T. L. In Heterocyclic Compounds; Elderfield, R. C., Ed.; Wiley: New York,
1957; Vol. 6,. p 136 (f) Haider, N.; Holzer, W. Sci. Synth., Product Class 9:
Cinnolines 2004, 16, 251–313; (g) Brown, D. J. Cinnolines and Phthalazines; John
Wiley & Sons, 2005. Suppl. II.
Ph
4-MeOC6H4
n-Pr
(CH2)2OH
(CH2)3OH
(CH2)4OH
CH2O–(3-MeOC6H4)
(CH2)2OH
(CH2)3OH
(CH2)4OH
E
E
2. von Richter, V. Ber. Dtsch. Chem. Ges. 1883, 16, 677–683.
3. (a) Widman, O. Ber. Dtsch. Chem. Ges. 1884, 17, 722–727; (b) Stoermer, R.;
Fincke, H. Ber. Dtsch. Chem. Ges. 1909, 42, 3115–3132; (c) Borsche, W.; Herbert,
A. Liebigs Ann. Chem. 1941, 546, 293–303.
5g
H
a
Method A: 48% aq HBr, acetone. Method B: MeSO3H, 1-(2-ethoxy-2-oxoeth-
yl)pyridinium bromide, CH2Cl2. Method C: MeSO3H, acetone containing 10–30%
water. Method D: H2SO4, 1:1 acetone and water mixture heated to 50 °C for 20 h.
Method E: MeSO3H, CH2Cl2.
4. (a) Villemin, D.; Goussu, D. Heterocycles 1989, 29, 1255–1261; (b) Le Fur, N.;
Mojovic, L.; Turck, A.; Ple, N.; Queguiner, G.; Reboul, V.; Perrio, S.; Metzner, P.
Tetrahedron 2004, 60, 7983–7994; (c) Vinogradova, O. V.; Sorokoumov, V. N.;
Vasilevskii, S. F.; Balova, I. A. Russ. Chem. Bull. 2008, 57, 1725–1733.
5. (a) Vinogradova, O. V.; Sorokoumov, V. N.; Balova, I. A. Tetrahedron Lett. 2009,
50, 6358–6360; (b) Bräse, S.; Dahmen, S.; Heuts, J. Tetrahedron Lett. 1999, 40,
6201–6203; (c) Bui, C. T.; Flynn, B. L. Mol. Divers. Pub. Online March 2010, doi:
b
Involves additional steps of protection and deprotection, see Scheme 5.
c
Yield based on recovered mass balance and 1H NMR of the crude product.
6. (a) Vasilevsky, S. F.; Tretyakov, E. V. Synth. Commun. 1994, 24, 1733–1736; (b)
Vasilevsky, S. F.; Tretyakov, E. V. Liebigs Ann. Chem. 1995, 775–779; (c)
Zolnikova, N. A.; Fedenok, L. G.; Polyakov, N. E. Org. Prep. Proced. Int. 2006, 38,
476–480.
7. (a) Fedenok, L. G.; Zolnikova, N. A. Tetrahedron Lett. 2003, 44, 5453–5455; (b)
Fedenok, L. G.; Barabanov, I. I.; Bashurova, V. S.; Bogdanchikov, G. A.
Tetrahedron 2004, 60, 2137–2145; (c) Zol’nikova, N. A.; Fedenok, L. G.;
Peresypkina, E. V.; Virovets, A. V. Russ. J. Org. Chem. 2007, 43, 790–792; (d)
We next turned to the use of triazenes 5 as substrates in direct
cyclization to cinnolinones 16 (Scheme 4), where H2O replaces XÀ
as the nucleophile. Treatment of triazenes 5a–g with MeSO3H in
aqueous acetone (Method C)12 produced cinnolinones 16a,b,d–g
and indazole 17c at room temperature in good to excellent yields
(61–86%) (entries 12–18, Table 1). Our initial attempt to convert