248, 2247; (f) N-Heterocyclic Carbenes in Synthesis, ed.
S. P. Nolan, Wiley-VCH, Weinheim, Germany, 2006; (g)
N-Heterocyclic Carbenes in Transition Metal Catalysis, ed.
F. Glorius, Springer, Berlin, 2007; (h) E. A. B. Kantchev,
C. J. O’Brien and M. G. Organ, Angew. Chem., Int. Ed., 2007,
46, 2768; (i) F. E. Hahn and M. C. Jahnke, Angew. Chem., Int. Ed.,
2008, 47, 3122; (j) S. Wurtz and F. Glorius, Acc. Chem. Res., 2008,
¨
´ ´
41, 1523; (k) S. Dıez-Gonzalez, N. Marion and S. P. Nolan, Chem.
Rev., 2009, 109, 3612; (l) T. Droge and F. Glorius, Angew. Chem.,
Int. Ed., 2010, 49, 6940.
¨
5 For excellent reviews, see: (a) V. Nair, S. Vellalath and B. P. Babu,
Chem. Soc. Rev., 2008, 37, 2691; (b) D. Enders, O. Niemeier and
A. Henseler, Chem. Rev., 2007, 107, 5606; (c) N. Marion, S.
´ ´
Dıez-Gonzalez and S. P. Nolan, Angew. Chem., Int. Ed.,
2007, 46, 2988; (d) E. M. Phillips, A. Chan and K. A. Scheidt,
Aldrichimica Acta, 2009, 42, 55.
6 For selected examples of Benzoin reactions, see: (a) D. Enders and
U. Kallfass, Angew. Chem., Int. Ed., 2002, 41, 1743; (b) D. Enders,
O. Niemeier and T. Balensiefer, Angew. Chem., Int. Ed., 2006, 45,
1463; (c) H. Takikawa, Y. Hachisu, J. W. Bode and K. Suzuki,
Angew. Chem., Int. Ed., 2006, 45, 3492; (d) M. J. White and
F. J. Leeper, J. Org. Chem., 2001, 66, 5124; (e) D. Enders and
A. Henseler, Adv. Synth. Catal., 2009, 351, 1749.
7 For reviews on the Stetter reaction, see: (a) J. Read de Alaniz and
T. Rovis, Synlett, 2009, 1189; (b) M. Christmann, Angew. Chem.,
Int. Ed., 2005, 44, 2632. For addition of Breslow intermediates to
non-activated alkenes and alkynes, see: (c) K. Hirano, A. T. Biju,
I. Piel and F. Glorius, J. Am. Chem. Soc., 2009, 131, 14190;
(d) A. T. Biju, N. E. Wurz and F. Glorius, J. Am. Chem. Soc.,
2010, 132, 5970; (e) J. He, S. Tang, J. Liu, Y. Su, X. Pan and
X. She, Tetrahedron, 2008, 64, 8797. See also: (f) J. Read de Alaniz,
M. S. Kerr, J. L. Moore and T. Rovis, J. Org. Chem., 2008, 73,
2033; (g) D. Enders, K. Breuer and J. Runsink, Helv. Chim. Acta,
1996, 79, 1899.
8 For selected work in homoenolate chemistry, see: (a) C. Burstein
and F. Glorius, Angew. Chem., Int. Ed., 2004, 43, 6205;
(b) S. S. Sohn, E. L. Rosen and J. W. Bode, J. Am. Chem. Soc.,
2004, 126, 14370; (c) M. He and J. W. Bode, Org. Lett., 2005, 7,
3131; (d) V. Nair, S. Vellalath, M. Poonoth and E. Suresh, J. Am.
Chem. Soc., 2006, 128, 8736; (e) C. Burstein, S. Tschan, X. Xie and
F. Glorius, Synthesis, 2006, 2418; (f) A. Chan and K. A. Scheidt,
J. Am. Chem. Soc., 2007, 129, 5334; (g) E. M. Phillips,
T. E. Reynolds and K. A. Scheidt, J. Am. Chem. Soc., 2008, 130,
2416.
Scheme 2 Competition experiment.
In conclusion, we have developed a direct NHC-catalyzed
hydroxymethylation of aldehydes that tolerates several important
functional groups. In addition, some light is shed on the
mechanistic intricacies of this remarkably selective trans-
formation. The rather broad scope and the attractive features
of this transformation should result in ample application of
this method.
Financial support by the Deutsche Forschungsgemeinschaft
(SPP 1179) is gratefully acknowledged. The research of
F.G. was supported by the Alfried Krupp Prize for Young
University Teachers of the Alfried Krupp von Bohlen und
Halbach Foundation. We also thank Dr A. T. Biju and I. Piel
for helpful discussions.
Notes and references
y General hydroxymethylation procedure: in an oven-dried Schlenk-
flask sealed with a rubber septum, thiazolium salt 6 (37 mg, 0.1 mmol,
0.1 eq.), paraformaldehyde (90 mg, 3.0 mmol, 3.0 eq.) and the
aldehyde (1.0 mmol, 1.0 eq.) were suspended in dry THF (4 mL).
N(iPr)2Et (33 mL, 0.2 mmol, 0.2 eq.) was added and the resulting
mixture was heated to 60 1C. In the case of aliphatic aldehydes, the
aldehyde was added after stirring the other reactants for 5 min at room
temperature. After a maximum reaction time of 24 h, the solvent was
evaporated and the crude product pre-adsorbed on Celite. Flash
chromatography on silica gel afforded the pure product.
9 T. Matsumoto, M. Ohishi and S. Inoue, J. Org. Chem., 1985, 50,
603.
10 (a) A. S. Demir, P. Ayhan, A. C. Igdir and A. N. Duygu, Tetra-
hedron, 2004, 60, 6509; (b) A. Cosp, C. Dresen, M. Pohl, L. Walter,
C. Rohr and M. Muller, Adv. Synth. Catal., 2008, 350, 759.
¨
¨
11 (a) R. Lebeuf, K. Hirano and F. Glorius, Org. Lett., 2008, 10,
4243. See also: (b) K. Hirano, I. Piel and F. Glorius, Adv. Synth.
Catal., 2008, 350, 984.
12 Further screening of different amounts of catalyst, paraformal-
dehyde and base, showed 10 mol% of the catalyst precursor 6,
3 eq. of the paraformaldehyde and a ratio of base (N(iPr)2Et) to
salt 6 of 2 : 1 to be optimal.
1 (a) D. Villemin, N. Cheikh, B. Mostefa-Kara, N. Bar,
N. Choukchou-Braham and M. A. Didi, Tetrahedron Lett., 2006,
47, 5519; (b) E. Lipka, M. P. Vaccher, C. Vaccher and C. Len,
Bioorg. Med. Chem. Lett., 2005, 15, 501; (c) C. Len, A. Selouane,
A. Weiling, F. Coicou and D. Postel, Tetrahedron Lett., 2003, 44,
663; (d) F. Babudri, V. Fiandanese, G. Marchese and A. Punzi,
Tetrahedron, 1999, 55, 2431.
13 See ESIz for further details.
14 A. R. Butler and I. Hussain, J. Chem. Soc., Perkin Trans. 2, 1981,
310.
2 F. F. Wong, P.-W. Chang, H.-C. Lin, B.-J. You, J.-J. Huang and
S.-K. Lin, J. Organomet. Chem., 2009, 694, 3452.
15 At this point, the intermediate formation of 10 and its conversion
to the observed product 7 by keto–enol tautomerism cannot be
excluded. However, whereas the acid catalyzed conversion of
hydroxy phenyl acetaldehyde to hydroxymethyl phenyl ketone is
reported, to the best of our knowledge the base catalyzed one is
not ((a) F. Weygand, H. J. Bestmann, H. Ziemann and E.
Klieger, Chem. Ber., 1958, 91, 1043). For literature reports on
the formation of hydroxy phenyl acetaldehyde, see: (; (b) D. Bojer,
3 (a) C. Chen, X. Feng, G. Zhang, Q. Zhao and G. Huang, Synthesis,
2008, 3205; (b) Y. Zhang, Z. Shen, J. Tang, Y. Zhang, L. Kong and
Y. Zhang, Org. Biomol. Chem., 2006, 4, 1478; (c) B. Plietker, Eur.
J. Org. Chem., 2005, 1919; (d) B. Plietker, J. Org. Chem., 2004, 69,
8287; (e) B. Plietker, J. Org. Chem., 2003, 68, 7123; (f) A. K.
El-Qisairi and H. A. Qaseer, J. Organomet. Chem., 2002, 659, 50;
(g) F. A. Davis and A. C. Sheppard, J. Org. Chem., 1987, 52, 954;
(h) E. Vedejs, J. Am. Chem. Soc., 1974, 96, 5944.
4 For authoritative reviews on NHCs and their application as
ligands in transition-metal catalysis, see: (a) A. J. Arduengo III.,
Acc. Chem. Res., 1999, 32, 913; (b) D. Bourissou, O. Guerret,
F. P. Gabbai and G. Bertrand, Chem. Rev., 2000, 100, 39;
(c) W. A. Herrmann, Angew. Chem., Int. Ed., 2002, 41, 1290;
(d) E. Peris and R. H. Crabtree, Coord. Chem. Rev., 2004, 248,
2239; (e) C. M. Crudden and D. P. Allen, Coord. Chem. Rev., 2004,
I. Kamps, X. Tian, A. Hepp, T. Pape, R. Frohlich and
¨
N. W. Mitzel, Angew. Chem., Int. Ed., 2007, 46, 4176;
(c) P. Tinapp, Chem. Ber., 1971, 104, 2266).
16 However, (ir)reversibility seems to depend on the electronic
nature of the R substituent: whereas 7 (R = Ph) was stable under
reaction conditions, the compound
7 substituted with an
electron-withdrawing ester group (R = 4-CO2Me–C6H4) was not
(ref. 13).
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 573–575 575