Inorg. Chem. 2011, 50, 1411–1419 1411
DOI: 10.1021/ic101973s
Chelating Effect as a Driving Force for the Selective Formation of Heteroligated
Pt(II) Complexes with Bidentate Phosphino-Chalcoether Ligands
Mari S. Rosen,† Alexander M. Spokoyny,† Charles W. Machan, Charlotte Stern, Amy Sarjeant, and Chad A. Mirkin*
Department of Chemistry and International Institute for Nanotechnology, Northwestern University,
2145 Sheridan Road, Evanston, Illinois 60208, United States. †These authors contributed equally to this work.
Received September 27, 2010
The halide-induced ligand rearrangement reaction (HILR) has been employed to provide selective and exclusive in situ
formation of heteroligated Rh(I), Pd(II), and Pt(II) complexes with bidentate phosphino-chalcoether ligands. To gain
insights on the nature of this unique reaction, we explored this process via the stepwise addition of bidentate
phosphino-chalcoether (P, X; X = S or Se) and relevant monodentate phosphine ligands with a Pt(II) metal precursor.
The corresponding monoligated complexes were obtained in quantitative yields by reacting 1 equiv of a P, X bidentate
ligand with Pt(II) and were fully characterized via single crystal X-ray diffraction studies and heteronuclear (31P, 77Se,
and 195Pt) NMR spectroscopy in solution. These species were further reacted with a second equivalent of either a
bidentate ligand or the monodentate ethyl diphenylphosphine ligand, resulting in the clean formation of the
heteroligated species or, in the case of the monodentate ligand with an electron-withdrawing bidentate ligand, a
mixture of products. On the basis of competitive exchange reactions between these heteroligated, homoligated, and
monoligated complexes, we conclude that ligand chelation plays a crucial role in the Pt(II) HILR. The in situ preferable
formation of the stable monoligated complex allows for ligand sorting to occur in these systems. In all cases where the
heteroligated product results, the driving force to these species is ligand chelation.
Introduction
it yields flexible species where the distances between the
chemically active functionalities can be modulated via revers-
ible chemistry on metal centers coordinated to hemilabile
ligands (1-6, Scheme 1).4 Metals that have been explored in
the context of the WLA include Rh(I),5 Ru(II), 6 Pd(II),5a,f,7
Coordination chemistry-based approaches for construct-
ing supramolecular structures are well-established, with three
general substrategies emerging: the directional bonding,1
symmetry interaction,2 and weak-link approaches.3 While
the former two approaches result in rigid structures with well-
defined cavities, the weak-link approach (WLA) is unique as
(4) (a) Gianneschi, N. C.; Bertin, P. A.; Nguyen, S. T.; Mirkin, C. A.;
Zakharov, L. N.; Rheingold, A. L. J. Am. Chem. Soc. 2003, 125, 10508.
(b) Gianneschi, N. C.; Cho, S.-H.; Nguyen, S. T.; Mirkin, C. A. Angew. Chem.,
Int. Ed. 2004, 43, 5503. (c) Gianneschi, N. C.; Nguyen, S. T.; Mirkin, C. A.
J. Am. Chem. Soc. 2005, 127, 1644. (d) Masar, M. S., III; Gianneschi, N. C.;
Oliveri, C. G.; Stern, C. L.; Nguyen, S. T.; Mirkin, C. A. J. Am. Chem. Soc. 2007,
129, 10149. (e) Oliveri, C. G.; Gianneschi, N. C.; Nguyen, S. T.; Mirkin, C. A.;
Stern, C. L.; Wawrzak, Z.; Pink, M. J. Am. Chem. Soc. 2006, 128, 16286.
(f) Yoon, H. J.; Heo, J.; Mirkin, C. A. J. Am. Chem. Soc. 2007, 129, 14182.
(g) Yoon, H. J.; Mirkin, C. A. J. Am. Chem. Soc. 2008, 130, 11590.
(5) (a) Eisenberg, A. H.; Ovchinnikov, M. V.; Mirkin, C. A. J. Am. Chem.
Soc. 2003, 125, 2836. (b) Farrell, J. R.; Eisenberg, A. H.; Mirkin, C. A.; Guzei,
I. A.; Liable-Sands, L. M.; Incarvito, C. D.; Rheingold, A. L.; Stern, C. L.
Organometallics 1999, 18, 4856. (c) Farrell, J. R.; Mirkin, C. A.; Guzei, I. A.;
Liable-Sands, L. M.; Rheingold, A. L. Angew. Chem., Int. Ed. 1998, 37, 465.
(d) Gianneschi, N. C.; Mirkin, C. A.; Zakharov, L. N.; Rheingold, A. L. Inorg.
Chem. 2002, 41, 5326. (e) Jeon, Y.-M.; Heo, J.; Brown, A. M.; Mirkin, C. A.
Organometallics 2006, 25, 2729. (f) Wiester, M. J.; Mirkin, C. A. Inorg. Chem.
2009, 48, 8054.
*To whom correspondence should be addressed. E-mail: chadnano@
northwestern.edu. Fax: (1) 847-467-5123.
(1) (a) Andres, R. P.; Bein, T.; Dorogi, M.; Feng, S.; Henderson, J. I.;
Kubiak, C. P.; Mahoney, W.; Osifchin, R. G.; Reifenberger, R. Science 1996,
272, 1323. (b) Hoskins, B. F.; Robson, R. J. Am. Chem. Soc. 1989, 111, 5962.
(c) Klosterman, J. K.; Yamauchi, Y.; Fujita, M. Chem. Soc. Rev. 2009, 38, 1714.
(d) Lee, S. J.; Lin, W. Acc. Chem. Res. 2008, 41, 521. (e) Leininger, S.; Olenyuk,
B.; Stang, P. J. Chem. Rev. 2000, 100, 853. (f) Lu, Z.; Knobler, C. B.; Furukawa,
H.; Wang, B.; Liu, G.; Yaghi, O. M. J. Am. Chem. Soc. 2009, 131, 12532.
(g) Piermattei, A.; Giesbers, M.; Marcelis, A. T. M.; Mendes, E.; Picken, S. J.;
Crego-Calama, M.; Reinhoudt, D. N. Angew. Chem., Int. Ed. 2006, 45, 7543.
(h) Spokoyny, A. M.; Kim, D.; Sumrein, A.; Mirkin, C. A. Chem. Soc. Rev. 2009,
38, 1218. (i) Wurthner, F.; You, C.-C.; Saha-Moller Chantu, R. Chem. Soc. Rev.
2004, 33, 133. (j) Amijs, C. H. M.; van Klink, G. P. M.; van Koten, G. Dalton
Trans. 2006, 308.
(2) (a) Albrecht, M. Chem. Soc. Rev. 1998, 27, 281. (b) Faiz, J. A.; Heitz, V.;
Sauvage, J.-P. Chem. Soc. Rev. 2009, 38, 422. (c) Fiedler, D.; Leung, D. H.;
Bergman, R. G.; Raymond, K. N. Acc. Chem. Res. 2005, 38, 349. (d) Flamigni,
L.; Collin, J.-P.; Sauvage, J.-P. Acc. Chem. Res. 2008, 41, 857. (e) Lehn, J.-M.
Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 4763. (f) Pluth, M. D.; Bergman, R. G.;
Raymond, K. N. J. Am. Chem. Soc. 2008, 130, 11423. (g) Stoddart, J. F. Chem.
Soc. Rev. 2009, 38, 1521.
(6) Kuwabara, J.; Stern, C. L.; Mirkin, C. A. J. Am. Chem. Soc. 2007, 129,
10074.
(7) (a) Eisenberg, A. H.; Dixon, F. M.; Mirkin, C. A.; Stern, C. L.; Incarvito,
C. D.; Rheingold, A. L. Organometallics 2001, 20, 2052. (b) Spokoyny, A. M.;
Reuter, M. G.; Stern, C. L.; Ratner, M. A.; Seideman, T.; Mirkin, C. A. J. Am. Chem.
Soc. 2009, 131, 9482.
(3) Holliday, B. J.; Mirkin, C. A. Angew. Chem., Int. Ed. 2001, 40, 2022.
r
2010 American Chemical Society
Published on Web 12/28/2010
pubs.acs.org/IC