3–40; (b) De Silva, A. P.; Fox, D. B.; Huxley, A. J. M.; Moody, T. S.
Combining luminescence, coordination and electron transfer for
signaling purposes. Coord. Chem. Rev. 2000, 205, 41–57; (c) Rurack,
K.; Resch-Genger, U. Rigidization, preorientation and electronic
decoupling: The ‘‘magic triangle’’ for the design of highly efficient
fluorescent sensors and switches. Chem. Soc. Rev. 2002, 31,
116–127.
CONCLUSIONS
The spectral changes upon addition of alkali and
alkaline earth metal ions in a newly synthesized
ligand where the A15C5 moiety is conjugated to a
tautomeric system were investigated. In the case of
alkali ions, a process of complexation was observed,
causing hypsochromic shift in the positions of the
tautomeric bands. The addition of Ca2þ, Sr2þ, and
Ba2þ initially leads to complex formation, but after
the free ligand has been fully consumed, a shift of
the tautomeric equilibrium toward keto tautomer
complex with the metal ion was observed with addi-
tion of excess of metal salt. The lack of instantaneous
shift of the equilibria does not allow one to estimate
the corresponding equilibrium constants with
acceptable precision, but in general we can state that
the complexation ability of the new ligand toward
alkaline earth metal ions is larger than that toward
alkali ions. This is the first discussion of the effect
of the metal-salt addition on the tautomeric equili-
brium in crown ether containing tautomeric Schiff
bases.
5. (a) Luboch, E.; Wagner-Wysiecka, E.; Biernat, J. F. Chromoionophores
with chromophores as integral part (s) of the macrocycle in crown
ethers. J. Supramol. Chem. 2002, 2, 279–291; (b) Bren, V. A.;
Dubonosov, A. D.; Minkin, V. I.; Tsukanov, A. T.; Gribanova, T. N.;
Shepenko, E. N.; Revinsky, Y. V.; Rybalkin, V. P. Photochromic
crown-containing molecular switches of chemosensor activity. J.
Phys. Org. Chem. 2007, 20, 917–928; (c) Hayvali, M.; Hayvali, Z.
The synthesis of some new mono and bis (crown ether)s and their
sodium complexes: Tautomerism in o-hydroxybenzo-15-crown-5
Schiff bases as studied by UV-VIS spectrophotometry. Synth. React.
Inorg. Metal-Org. Chem. 2004, 34, 713–732; (d) Lu, X. X.; Qin, S.
Y.; Zhou, Z. Y.; Yam, V. W. W. Synthesis, structure, and ion-binding
studies of cobalt(II) complexes with aza-crown substituted salicylaldi-
mine Schiff base ligand. Inorg. Chim. Acta 2003, 346, 49–56; (e)
Douhal, A.; Roshal, A. D.; Organero, J. A. Stepwise interactions,
sodium ion photoejection and proton-transfer inhibition in
a
crown-ether and proton-transfer dye. Chem. Phys. Lett. 2003, 381,
519–525; (f) Huszthy, P.; Vermes, B.; Bathori, N.; Czugler, M.
Synthesis and X-ray crystallographic studies of novel proton-ionizable
nitro- and halogen-substituted acridono-18-crown-6 chromo- and
fluorogenic ionophores. Tetrahedron 2003, 59, 9371–9377; (g)
Hayvali, Z.; Hayvali, M.; Kilic, Z.; Hokelek, T.; Weber, E. New
benzo-15-crown-5 ethers featuring salicylic Schiff base substitutions:
Synthesis, complexes and structural study. J. Incl. Phenom. 2003, 45,
285–294; (h) Bordunov, A. V.; Bradshaw, J. S.; Pastushok, V. N.;
Zhang, X. X.; Kou, X.; Dalley, N. K.; Yang, Z.; Savage, P. B.; Izatt,
R. M. Azacrown ethers containing oximic and Schiff base sidearms:
Potential heteronuclear metal ion receptors. Tetrahedron 1997,
53(52), 17595–17606; (i) Dubonosov, A. D.; Minkin, V. I.; Bren, V.
A.; Shepelenko, E. N.; Tsukanov, A. V.; Starikov, A. G.; Borodkin,
G. S. Tautomeric crown-containing chemosensors for alkali-earth
metal cations. Tetrahedron 2008, 64, 3160–3167.
ACKNOWLEDGMENTS
The authors gratefully acknowledge the financial
support of The Swiss National Science Foundation
(grant JRP IB7320-110961=1).
6. Vladimirova, M. P.; Simova, S. D.; Stanoeva, E. R.; Mitewa, M. I.
Synthesis and spectroscopic properties of new Schiff bases containing
the N-phenylaza-15-crown-5 moiety. Dyes Pigm. 2001, 50,
157–162.
7. Antonov, L.; Vladimirova, M.; Stanoeva, E.; Fabian, W. M. F.;
Ballester, L.; Mitewa, M. Complexation properties of Schiff bases
containing N-phenylaza-15-crown-5 moiety. J. Incl. Phenom. 2001,
40, 23–28.
8. Riddock, J. A.; Bunger, W. B.; Sakano, T. K. Techniques in Chemistry:
Vol. 2. Organic Solvents—Physical Properties and Methods of
Purification, 4th ed.; Wiley: New York, 1986.
9. Antonov, L.; Fabian, W. M. F.; Nedeltcheva, D.; Kamounah, F. S.
Tautomerism of 2-hydroxynaphtaldehide Schiff bases. JCS Perkin
Trans. 2000, 1173–1179.
10. Herzfeld, R.; Nagy, P. Studies of the solvent effect observed in the
absorption spectra of certain types of Schiff bases. Curr. Org. Chem.
2001, 5, 373–394.
11. There is no simple explanation of this phenomenon. It is known that
the metal ion addition leads to stronger change in the tautomeric
equilibrium in solvents where the dissociation of the metal salt is
weak. In water or in solvents with substantial water content, no such
effect has been observed.[10]
12. Mitewa, M.; Mateeva, N.; Antonov, L. Spectrophotometric investiga-
tion on the complexation between chromo- and fluoroionophores
containing aza-15-crown-5 moiety and alkaline and alkaline earth
metal ions. Quimica Analitica 1997, 16, S153–S162.
REFERENCES
1. (a) Hynes, J. T.; Klinman, J. P.; Limbach, H.-H.; Schowen, R. L.; Eds.
Hydrogen Transfer Reactions; Wiley-VCH: Weinheim, 2006; (b)
Mueller, A.; Rataiczak, H.; Junge, W. Electron and proton transfer
in chemistry and biology. In Studies in Physical and Theoretical
Chemistry; Diemann, E., Ed.; Elsevier: Amsterdam, 1992.
2. (a) Joshi, H.; Kamounah, F. S.; van der Zwan, G.; Gooijer, C.;
Antonov, L. Temperature dependent absorption spectroscopy of
some tautomeric azodyes and schiff bases. JCS Perkin Trans. 2001,
2303–2308; (b) Antonov, L.; Fabian, W. M. F.; Taylor, P. J. Tautomer-
ism in some aromatic schiff bases and related azo-compounds. J.
Phys. Org. Chem. 2005, 18, 1169–1175; (c) Fabian, W. M. F.;
Antonov, L.; Nedeltcheva, D.; Kamounah, F. S.; Taylor, P. J.
Tautomerism in hydroxynaphtaldehide anils and azo analogues: A
combined experimental and computational study. J. Phys. Chem.
2004, 108, 7603–7612.
3. Kamounah, F. S.; Antonov, L.; Petrov, V.; van der Zwan, G. An
integrated approach to the study of the tautomerism of
4-((phenylimino)methyl)naphtalene-1-ol. J. Phys. Org. Chem. 2007,
20, 313–320.
4. (a) Valeur, B.; Leray, I. Design principles of fluorescent molecular
sensors for cation recognition. Coord. Chem. Rev. 2000, 205,
27
Tautocrowns: Part I. Aza-15-Crown Moiety Conjugated