G. R. Stephenson et al. / Tetrahedron Letters 51 (2010) 6806–6809
6809
bond formation in alkaloid synthesis, see: Iida, H.; Watanabe, Y.; Kibayashi, C. J.
Org. Chem. 1985, 50, 1818–1825.
7. Astley, S. T.; Stephenson, G. R. Synlett 1992, 507–509.
8. Astley, S. T.; Meyer, M.; Stephenson, G. R. Tetrahedron Lett. 1993, 34, 2035–
2038.
Miller, M. J.; Zajicek, J.; Noll, B. C.; Möllmann, U.; Dahse, H.-M.; Miller, P. A. Org.
Lett. 2007, 9, 2923–2926) including polymer-supported examples: Krchnak, V.;
Möllmann, U.; Dahse, H.-M.; Miller, M. J. J. Comb. Chem. 2008, 10, 112–117. This
has provided many examples of high-yielding NDA reactions with this class of
heterodienophile.
9. Anson, C. E.; Hartman, S.; Kelsey, R. D.; Stephenson, G. R. Polyhedron 2000, 19,
569–571.
10. The acylnitroso class of heterodienophiles does not naturally give this
regioselectivity (see Ref. 13), but Shea’s approach overcomes this difficulty
by using an intramolecular cycloaddition strategy.
15. Yamamoto, Y.; Yamamoto, H. J. Am. Chem. Soc. 2004, 126, 4128–4129.
16. The reported regioselectivity may be a consequence of the Cu(I)-catalysis (see
Refs. 14,5a) which is not compatible with the use of trimethylamine N-oxide in
the tandem decomplexation/NDA procedure.
17. Møller, E.; Jørgensen, K. A. J. Org. Chem. 1996, 61, 5770–5778.
18. See also: Zhao, D.; Johansson, M.; Backvall, J.-E. Eur. J. Org. Chem. 2007, 4431–
4436.
19. Defoin, A.; Geoffroy, G.; le Nouen, D.; Spileers, D.; Streith, J. Helv. Chim. Acta
1989, 72, 1199–1215; For recent examples of the use of this nitroso reagent,
see: (a) Tibiletti, F.; Simonetti, M.; Nicholas, K. M.; Palmisano, G.; Parravicini,
M.; Imbesi, F.; Tollari, S.; Penoni, A. Tetrahedron 2010, 66, 1280–1288; (b) Rück-
Braum, K.; Kempa, S.; Priewisch, B.; Richter, A.; Seedorff, S.; Wallach, L.
Synthesis 2009, 4256–4267; (c) Sakai, H.; Ding, X.; Yoshida, T.; Fujinami, S.;
Ukaji, Y.; Inamata, K. Heterocycles 2008, 76, 1285–1300.
11. For other recent examples of tricarbonyliron complexes in organic synthesis,
see: Pearson, A. J.; Kim, E. H. Tetrahedron 2010, 66, 4943–4946; Han, J.-L.; Liu,
M.-C.; Ong, C.-W. J. Org. Chem. 2010, 75, 1637–1642; Roe, C.; Sandoe, E. J.;
Stephenson, G. R. Tetrahedron Lett. 2010, 51, 591–595; Gone, J. R.; Wallock, N.
J.; Lindeman, S.; Donaldson, W. A. Tetrahedron Lett. 2009, 50, 1023–1025; Knott,
K. E.; Auschill, S.; Jäger, A.; Knölker, H.-J. Chem. Commun. 2009, 1467–1469;
Anson, C. E.; Malkov, A. V.; Roe, C.; Sandoe, E. J.; Stephenson, G. R. Eur. J. Org.
Chem. 2008, 196–213; Roe, C.; Sandoe, E. J.; Stephenson, G. R.; Anson, C. E.
Tetrahedron Lett. 2008, 49, 650–653; Roe, C.; Stephenson, G. R. Org. Lett. 2008,
10, 189–192; Pearson, A. J.; Sun, H. J. Org. Chem. 2007, 72, 7693–7700;
Williams, I.; Reeves, K.; Kariuki, B. M.; Cox, L. Org. Biomol. Chem. 2007, 5, 3325–
3329; Pearson, A. J.; Sun, H.; Wang, X. J. Org. Chem. 2007, 72, 2547–2557; Owen,
D. A.; Malkov, A. V.; Palotai, I. M.; Roe, C.; Sandoe, E. J.; Stephenson, G. R. Chem.
Eur. J. 2007, 13, 4293–4311; Siddiquee, T. A.; Lukesh, J. M.; Lindeman, S.;
Donaldson, W. A. J. Org. Chem. 2007, 72, 9802–9803; Pandey, R. K.; Lindeman,
S.; Donaldson, W. A. Eur. J. Org. Chem. 2007, 3829–3831; Choi, T. A.; Czerwonka,
R.; Fröhner, W.; Krahl, M. P.; Reddy, K. R.; Franzzblau, S. G.; Knölker, H.-J.
ChemMedChem 2006, 1, 812–815; Czerwonka, R.; Reddy, K. R.; Baum, E.;
Knölker, H.-J. Chem. Commun. 2006, 711–713; Chaudhury, S.; Danoaldson, W.
A. J. Am. Chem. Soc. 2006, 128, 5984–5985; Pearson, A. J.; Wang, X. Tetrahedron
Lett. 2005, 46, 4809–4811; Frank-Neumann, M.; Geoffrey, P.; Gassmann, D.;
Winling, A. Tetrahedron Lett. 2004, 45, 5407–5410; Schobert, R.; Mangold, A.;
Baumann, T.; Milius, W.; Hampel, F. J. Organomet. Chem. 2004, 689, 575–584;
Stephenson, G. R. Polyfunctional Electrophilic Multihapto-organometallics for
Organic Synthesis. In Handbook of Functionalised Organometallics; Knochel, P.,
Ed.; Wiley-VCH: Weinheim, 2005; pp 569–626 (ISBN 3-527-31131-9).
12. Tandem decomplexation/NDA is important because of the sensitive (see Ref. 9)
lactone ring in this diene ligand (see Fig. 1a).
20. Davey, M. H.; Lee, Y. V.; Miller, R. D.; Marks, T. J. J. Org. Chem. 1999, 64, 4976–
4979.
21. Møller’s study (Ref. 17; 1996) also performed semiempirical AM1 calculations
to identify the orientation of the aryl group. Our 2000 (Ref. 9) example and the
two examples reported in this Letter show similar orientations of the aryl
group in the solid state and support the earlier conclusions based on
calculations. For a crystallographically defined pyridyl example, see Ref. 15.
See also Ref. 25.
22. Katritzky, A.; Lourenzo, K. S. J. Org. Chem. 1988, 53, 3978–3982.
23. Attempts to nitrosylate the benzyl ether of phenol were unsuccessful, so we
examined nitrobenzyl ether in the expectation that this would deactivate the
benzyl arene and so improve selectivity for the phenyl ether ring.
24. The corresponding nitrosylations of anisole and 4-nitrophenyl phenyl ether are
known: Atherton, J. H.; Modie, R. B.; Noble, D. R.; O’Sulivan, B. J. Chem. Soc.,
Perkin Trans. 2 1997, 663–664; See also Ref. 19a.
*
25. Preliminary DFT calculations (GAUSSIAN03/B3LYP/6-31 g ) indicate that the more
stable orientation has the arene lying over the CH@CH section of the
hydrocarbon ring in preference to the CH2–CH2 side [energy differences with
Ar = Ph: ꢀ0.0839497 Ha (220 kJ molꢀ1); Ar = 4-NO2–C6H4: ꢀ0.0033301 Ha
(8.7 kJ molꢀ1) in the gas phase].
13. Howard, J. A. K.; Ilyashenko, G.; Sparkes, H. A.; Whiting, A.; Wright, A. R. Adv.
Synth. Catal. 2008, 350, 869–882; Howard, J. A. K.; Ilyashenko, G.; Sparkes, H.
A.; Whiting, A. J. Chem. Soc., Dalton Trans. 2007, 2108–2111; Adamo, M. F. A.;
Bruschi, S. Targets Heterocycl. Syst. 2007, 11, 396–430.
14. There has been considerable recent interest in applications of 2-
nitrosopyridine reagents in MEND (Modular Enhancement of Nature’s
Diversity) procedures (Yang, B.; Zöllner, T.; Gebhard, P.; Möllmann, U.;
Miller, M. J. Org. Biomol. Chem. 2010, 8, 691–697; Yang, B.; Miller, P. A.;
Möllmann, U.; Miller, M. J. Org. Lett. 2009, 11, 2828–2831; Li, F.; Yang, B.;
26. Yang, B.; Miller, M. J. Org. Lett. 2010, 12, 392–395.
27. For a recent review, see: Hudlicky, T.; Reed, J. T. Synlett 2009, 685–703; for cis-
diol-derived dieneiron complexes, see: Howard, P. W.; Stephenson, G. R.;
Taylor, S. C. J. Organomet. Chem. 1989, 370, 97–109; Howard, P. W.; Stephenson,
G. R.; Taylor, S. C. J. Organomet. Chem. 1988, 339, C5–C8; related example
(monool): Howard, P. W.; Stephenson, G. R.; Taylor, S. C. Chem. Commun. 1990,
1182–1184.