Superparamagnetic Nanoparticle-Supported (S)-Diphenylprolinol Trimethylsilyl Ether
K. A. Jørgensen, J. Am. Chem. Soc. 2005, 127, 18296–
Fe3O4@SiO2 and applied the immobilized catalyst in
the asymmetric Michael addition of aldehydes to ni-
troalkenes. Moderate to good yields (up to 96%),
good enantioselectivity (up to 90% ee) and diastereo-
selectivities (up to 99:1) were obtained. The NMP-
supported catalyst could be reused in the asymmetric
Michael addition reaction for four times without sig-
nificant loss of stereoselectivities.
18304; c) Y. Hayashi, H. Gotoh, T. Hayashi, M. Shoji,
Angew. Chem. 2005, 117, 4284–4287; Angew. Chem.
Int. Ed. 2005, 44, 4212–4215.
[3] For reviews see: a) C. Palomo, A. Mielgo, Angew.
Chem. 2006, 118, 8042–8046; Angew. Chem. Int. Ed.
2006, 45, 7876–7880; b) A. Mielgo, C. Palomo, Chem.
Asian J. 2008, 3, 922–948.
[4] S. Mukherjee, J. W. Yang, S. Hoffmann, B. List, Chem.
Rev. 2007, 107, 5471–5569.
[5] A. Erkkilꢃ, I. Majander, P. M. Pihko, Chem. Rev. 2007,
107, 5416–5470.
Experimental Section
[6] a) O. Penon, A. Carlone, A. Mazzanti, M. Locatelli, L.
Sambri, G. Bartoli, P. Melchiorre, Chem. Eur. J. 2008,
14, 4788–4791; b) J. Vesely, R. Rios, I. Ibrahem, G.-L.
Zhao, L. Eriksson, A. Cꢄrdova, Chem. Eur. J. 2008, 14,
2693–2698; c) P. T. Franke, R. L. Johansen, S. Bertel-
sen, K. A. Jørgensen, Chem. Asian J. 2008, 3, 216–224;
d) G.-L. Zhao, J. Vesely, R. Rios, I. Ibrahem, H.
Sundꢂn, A. Cꢄrdova, Adv. Synth. Catal. 2008, 350, 237–
242; e) D. Enders, M. R. M. Hꢅttl, G. Raabe, J. W.
Bats, Adv. Synth. Catal. 2008, 350, 267–279.
[7] a) K. Ding, Y. Uozumi, Handbook of Asymmetric Het-
erogeneous Catalysis, Wiley-VCH, Weinheim, 2008;
b) M. Benaglia, Recoverable and Recylable Catalysts,
Wiley-VCH, Weinheim, 2009.
[8] I. Mager, K. Zeitler, Org. Lett. 2010, 12, 1480–1483.
[9] A. H. Lu, E. L. Salabas, F. Schꢅth, Angew. Chem. 2007,
119, 1242–1266; Angew. Chem. Int. Ed. 2007, 46, 1222–
1244.
General Procedure for the Asymmetric Michael
Addition Reaction using Catalyst 7
To a solution of aldehyde (2.0 mmol) in water (0.5 mL) was
added nitroalkene (0.2 mmol) and heterogeneous catalyst 7
(60 mg, 0.04 mmol). After the resulting mixture had been
stirred at ambient temperature for 72 h, catalyst 7 was con-
centrated by using an external magnet and the aqueous solu-
tion was decanted. Ethyl acetate was then added to wash
catalyst 7 for several times and the aqueous solution de-
ACHTUNGTRENNUNGcanted was extracted with ethyl acetate three times. The or-
ganic layers were then combined, dried over anhydrous
Na2SO4 and further purified by column chromatography on
silica to obtain the desired products, with petroleum ether/
EtOAc=4:1 to 10:1 as the eluent.
Recycle Use of Catalyst 7
[10] S. Shylesh, V. Schꢅnemann, W. R. Thiel, Angew. Chem.
2010, 122, 3504–3537; Angew. Chem. Int. Ed. 2010, 49,
3428–3459.
[11] a) D. Lee, J. Lee, H. Lee, S. Jin, T. Hyeon, B. M. Kim,
Adv. Synth. Catal. 2006, 348, 41–46; b) S. Luo, X.
Zheng, H. Xu, X. Mi, L. Zhang, J.-P. Cheng, Adv.
Synth. Catal. 2007, 349, 2431–2434; c) S. Luo, X.
Zheng, J.-P. Cheng, Chem. Commun. 2008, 5719–5721;
d) O. Gleeson, R. Tekoriute, Y. K. Gun’ko, S. J.
Connon, Chem. Eur. J. 2009, 15, 5669–5673.
After being washed with ethyl acetate for several times, the
used catalyst 7 was dried under vacuum at 558C for 24 h.
The recycled catalyst 7 (60 mg, 0.04 mmol) was then added
to the solution of propanal (116 mg, 2.0 mmol), trans-b-ni-
trostyrene (30 mg, 0.2 mmol), and benzoic acid (24 mg,
0.2 mmol) in water (0.5 mL). After being stirred for 72 h at
ambient temperature, the reaction mixture and the recycled
catalyst 7 were treated as described above.
[12] H. M. R. Gardimalla, D. Mandal, P. D. Stevens, M.
Yen, Y. Gao, Chem. Commun. 2005, 4432–4434.
[13] a) M. Shokouhimehr, Y. Piao, J. Kim, Y. Jang, T.
Hyeon, Angew. Chem. 2007, 119, 7169–7173; Angew.
Chem. Int. Ed. 2007, 46, 7039–7043; b) G. Chouhan, D.
Wang, H. Alper, Chem. Commun. 2007, 4809–4811;
c) C. Che, W. Li, S. Lin, J. Chen, J. Zheng, J. Wu, Q.
Zheng, G. Zhang, Z. Yang, B. Jiang, Chem. Commun.
2009, 5990–5992; d) V. Polshettiwar, R. S. Varma,
Chem. Eur. J. 2009, 15, 1582–1586; e) A. Hu, G. T.
Yee, W. Lin, J. Am. Chem. Soc. 2005, 127, 12486–
12487; f) V. Polshettiwar, R. S. Varma, Org. Biomol.
Chem. 2009, 7, 37–40; g) J. Liu, X. Peng, W. Sun, Y.
Zhao, C. Xia, Org. Lett. 2008, 10, 3933–3936; h) B.
Baruwati, D. Guin, S. V. Manorama, Org. Lett. 2007, 9,
5377–5380; i) G. Lv, W. Mai, R. Jin, L. Gao, Synlett
2008, 1418–1422.
Acknowledgements
This work was financially supported by the National Natural
Science Foundation of China (No. 20972064), the 111 project,
and the Program for New Century Excellent Talents in Uni-
versity (NCET-06-0904).
References
[1] a) B. List, R. A. Lerner, C. F. Barbas III, J. Am. Chem.
Soc. 2000, 122, 2395–2396; b) K. A. Ahrendt, C. J.
Borths, D. W. C. MacMillan, J. Am. Chem. Soc. 2000,
122, 4243–4244; c) W. S. Jen, J. J. M. Wiener, D. W. C.
MacMillan, J. Am. Chem. Soc. 2000, 122, 9874–9875.
[2] For the first reports on Jørgensen–Hayashi catalysts,
see: a) M. Marigo, T. C. Wabnitz, D. Fielenbach, K. A.
Jørgensen, Angew. Chem. 2005, 117, 804–807; Angew.
Chem. Int. Ed. 2005, 44, 794–797; b) J. Franzꢂn, M.
Marigo, D. Fielenbach, T. C. Wabnitz, A. Kjærsgaard,
[14] a) E. Alza, M. A. Pericꢆs, Adv. Synth. Catal. 2009, 351,
3051–3056; b) Z. Zheng, B. L. Perkins, B. Ni, J. Am.
Chem. Soc. 2010, 132, 50–51.
[15] S. Zhu, S. Yu, D. Ma, Angew. Chem. 2008, 120, 555–
558; Angew. Chem. Int. Ed. 2008, 47, 545–548.
Adv. Synth. Catal. 2010, 352, 2923 – 2928
ꢁ 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2927