the many types of C-H functionalization of azoles docu-
mented, the direct C-H amination of azoles pioneered by
Mori,6a Schreiber,6b Chang,6c and others2l,m provided a rapid
and straightforward access to the heteroarylamines. However,
all of the aforementioned methods inherently suffer from
harsh conditions such as high reaction temperature and use
of a stoichiometric amount of expensive organometallic
reagents and metal oxidant and a large amount of strong base
or acid. Therefore, further development for direct C-H
amination would be highly desired. The iminium-type
intermediate 2 was first reported by Murahashi and has
become one of the most useful active species for related
transformations.7 Li and co-workers developed the copper-
catalyzed cross-dehydrogenative coupling (CDC) of tertiary
amines with alkynes, active methylene, and nitromethane
(Scheme 1, A) by using this strategy.8 These elegant studies
have prompted us to envisage that, in the presence of
dioxygen-copper systems,9 the iminium-type species 2
would be generated from tertiary amine via C-H bond
cleavage. The reactive intermediate 2 might undergo C-N
bond cleavage via hydrolysis to produce the copper amide
Scheme 1. Proposed New Strategy for Oxidative Amination
6,10 which would react with azole 3 quickly. Thus the
directed C-H amination of azoles with tertiary amines would
be expected under the mild conditions (Scheme 1, B).
To test our hypothesis, the copper-catalyzed aerobic
oxidative C-H amination of benzoxazole 3a with Et3N 1a
as a nitrogen source was selected as a benchmark reaction.
As shown in Table 1, use of CuCl2 as a catalyst under 1 atm
(3) For catalytic C-N activation reaction: (a) Kuninobu, Y.; Nishi, M.;
Takai, K. Chem. Commun. 2010, 8860. (b) Kruger, K.; Tillack, A.; Beller,
M. ChemSusChem 2009, 2, 715. (c) Ueno, S.; Chatani, N.; Kakiuchi, F.
J. Am. Chem. Soc. 2007, 129, 6098. (d) Zou, B.; Jiang, H.-F.; Wang, Z.-Y.
Eur. J. Org. Chem. 2007, 4600. (e) Trzeciak, A. M.; Ciunik, Z.; Zioikowski,
J. J. Organometallics 2002, 21, 132. (f) Gandelman, M.; Milstein, D. Chem.
Commun. 2000, 1603. (g) Hosokawa, T.; Kamiike, T.; Murahashi, S.-I.;
Shimada, M.; Sugafuji, T. Tetrahedron Lett. 2002, 43, 9323. (h) Laine,
R. M.; Thomas, D. W.; Cary, L. W. J. Am. Chem. Soc. 1982, 104, 1763.
(4) For reviews: (a) Alberico, D.; Scott, M. E.; Lautens, M. Chem. ReV.
2007, 107, 174. (b) Ackermann, L.; Vicente, R.; Kapdi, A. R. Angew. Chem.,
Int. Ed. 2009, 48, 9792. (c) Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc.
Chem. Res. 2009, 42, 1074. (d) Dudnik, A. S.; Gevorgyan, V. Angew. Chem.,
Int. Ed. 2010, 49, 2096.
Table 1. Optimization of the Reaction Conditionsa
entry
catalyst
acid (20 mol %)
none
t (°C)
yield (%)b
1
2
CuCl2
CuBr
80
80
29
23
34
<1
55
49
52
49
45
31
84
81
89
70
0
none
(5) For selected examples: (a) Do, H. Q.; Khan, R. M. K.; Daugulis, O.
J. Am. Chem. Soc. 2008, 130, 15185. (b) Zhao, D.; Wang, W.; Yang, F.;
Lan, J.; Yang, L.; Gao, G.; You, J. Angew. Chem., Int. Ed. 2009, 48, 3296.
(c) Do, H. Q.; Daugulis, O. J. Am. Chem. Soc. 2007, 129, 12404. (d) Canivet,
J.; Yamaguchi, J.; Ban, I.; Itami, K. Org. Lett. 2009, 11, 1733. (e)
Matsuyama, N.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2009, 11, 4156.
(f) Ackermann, L.; Althammer, A.; Fenner, S. Angew. Chem., Int. Ed. 2009,
48, 201. (g) Huang, J.; Chan, J.; Chen, Y.; Broths, C.; Baucom, J. K. D.;
Larsen, R. D.; Faul, M. M. J. Am. Chem. Soc. 2010, 132, 3674. (h) Nakao,
Y.; Kashihara, N.; Kanyiva, K. S.; Hiyama, T. Angew. Chem., Int. Ed. 2010,
49, 4451. (i) Hachiya, H.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem.,
Int. Ed. 2010, 49, 2202.
3
4
5
6
7
8
9
10
11c
12
13
14d
15e
16
CuBr2
Cu(OAc)2
CuBr2
CuBr2
CuBr2
CuBr2
CuBr2
CuBr2
CuBr2
CuBr2
CuBr2
CuBr2
CuBr2
-
none
none
CH3CO2H
HCO2H
80
80
80
80
80
80
80
80
C6H5CO2H
(4-MeO)C6H4CO2H
(4-Me)C6H4CO2H
2-OHC6H4CO2H
CH3COOH
CH3COOH
CH3COOH
CH3COOH
CH3COOH
CH3COOH
80
100
120
120
120
120
(6) (a) Monguchi, D.; Fujiwara, T.; Furukawa, H.; Mori, A. Org. Lett.
2009, 11, 1607. (b) Wang, Q.; Schreiber, S. L. Org. Lett. 2009, 11, 5178.
(c) Cho, S. H.; Kim, J. Y.; Lee, S. Y.; Chang, S. Angew. Chem., Int. Ed.
2009, 48, 9127. (d) During the preparation of this manuscript, a report on
the C-H amination of azoles with secondary and primary amines was
published, but the yields are generally low: Kim, J. Y.; Cho, S. H.; Joseph,
J.; Chang, S. Angew. Chem., Int. Ed. 2010, 49, 9899.
0
a General conditions: 3a (0.5 mmol), Et3N (1.0 mmol), 1,4-dioxane (1.0
mL), O2 (1 atm), 16 h. b Isolated yield. c CuBr2 (15 mol %). d CuBr2 (5
mol %). e In the Ar atmosphere.
(7) For reviews: (a) Murahashi, S.-I.; Hirano, T.; Yano, T. J. Am. Chem.
Soc. 1978, 100, 348. (b) North, M. Angew. Chem., Int. Ed. 2004, 43, 4126.
(c) Murahashi, S.-I.; Komiya, N.; Terai, H.; Nakae, T. J. Am. Chem. Soc.
2003, 125, 15312. (d) Murahashi, S.-I.; Komiya, N.; Terai, H. Angew. Chem.,
Int. Ed. 2005, 44, 6931.
(8) (a) Li, C.-J. Acc. Chem. Res. 2009, 42, 335. (b) Li, Z.; Li, C.-J.
J. Am. Chem. Soc. 2004, 126, 11810. (c) Li, Z.; Bohle, D. S.; Li, C.-J.
Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 8928.
of O2 at 80 °C yielded the desired amine 4aa in 29% yield
(Table 1, entry 1) and no dimer of benzoxazole was observed,
which indicated that the desired C-H amination involving
C-H and C-N bond cleavage was indeed possible albeit
in low yield. Other copper sources, including CuBr, CuBr2,
and Cu(OAc)2, were also tested, and the results demonstrated
that CuBr2 was the best choose (Table 1, entries 1-4). Other
commonly used metal salts such as Ag(I) salts, Pd(OAc)2,
(9) For reviews on copper-dioxygen catalytic systems: (a) Lewis, E. A.;
Tolman, W. B. Chem. ReV. 2004, 104, 1047. (b) Mirica, L. M.; Otten-
waelder, X.; Stack, T. D. P. Chem. ReV. 2004, 104, 1013. (c) Prigge, S. T.;
Eipper, B. A.; Mains, R. E.; Amzel, L. M. Science 2004, 304, 864. (d)
Nam, W. Acc. Chem. Res. 2007, 40, 465. For selected examples: (a)
Kunishita, A.; Ishimaru, H.; Nakashima, S.; Ogura, T.; Itoh, S. J. Am. Chem.
Soc. 2008, 130, 4244. (b) Hamada, T.; Ye, X.; Stahl, S. S. J. Am. Chem.
Soc. 2008, 130, 833. (c) King, A. E.; Brunold, T. C.; Stahl, S. S. J. Am.
Chem. Soc. 2009, 131, 5044. (d) Zhang, C.; Jiao, N. J. Am. Chem. Soc.
2010, 132, 28. (e) Zhang, C.; Jiao, N. Angew. Chem., Int. Ed. 2010, 49,
6174.
(10) Tian, J.-S.; Loh, T.-P. Angew. Chem., Int. Ed. 2010, 49, 8417.
Org. Lett., Vol. 13, No. 3, 2011
523