5 J. A. Delaire and K. Nakatani, Chem. Rev., 2000, 100, 1817.
amplitude, the profile is hardly perceivable by AFM (Fig. 9(a)).
After irradiation for 35 s, the surface relief structure can be
clearly seen (Fig. 9(b)). However, in contrast to the final SRG,
there is a shallower trough on every relief crest. In order to
identify the difference, it is named as shallow trough to distin-
guish it from the true trough. The separation between the true
troughs corresponds to the grating period and is determined by
the incident angle and the wavelength of the laser beam. It can be
estimated from AFM that the depth of the shallow trough is
about 5 nm and the depth of the true grating trough is about
12 nm. After irradiation for 45 s, the depth of the true trough
obviously increases but the depth of the swallow trough is almost
the same (Fig. 9(c)). When the irradiation time further increases,
the modulation amplitude of the grating keeps increasing and the
shallow trough on the relief crest gradually disappears (Fig. 9(d)
and 9(e)). The result presents a visualized picture of the SRG
formation on the film through viscous flow. During the process,
the material in the bright areas of the interfering fringes becomes
soft and starts to migrate to the dark area at the initial stage. As
the irradiation time increases, the mass-migration process grad-
ually develops and spreads to the dark regions of the fringes. This
observation can be used to better understand the SRGs forma-
tion mechanisms.
6 A. Natansohn and P. Rochon, Chem. Rev., 2002, 102, 4139.
7 N. K. Viswanathan, D. Y. Kim, S. P. Bian, J. Williams, W. Liu, L. Li,
L. Samuelson, J. Kumar and S. K. Tripathy, J. Mater. Chem., 1999, 9,
1941.
8 T. Ikeda, J. Mamiya and Y. Yu, Angew. Chem., Int. Ed., 2007, 46, 506.
9 T. Todorov, L. Nikolova and N. Tomova, Appl. Opt., 1984, 23, 4309.
10 M. Kondo, Y. L. Yu and T. Ikeda, Angew. Chem., Int. Ed., 2006, 45,
1378.
11 P. Rochon, E. Batalla and A. Natansohn, Appl. Phys. Lett., 1995, 66,
136.
12 D. Y. Kim, S. K. Tripathy, L. Li and J. Kumar, Appl. Phys. Lett.,
1995, 66, 1166.
13 X. L. Jiang, J. Kumar, D. Y. Kim, V. Shivshankar and S. K. Tripathy,
Appl. Phys. Lett., 1996, 68, 2618.
14 (a) C. J. Barrett, A. L. Natansohn and P. L. Rochon, J. Phys. Chem.,
1996, 100, 8836; (b) C. J. Barrett, P. Rochon and A. Natansohn, J.
Chem. Phys., 1998, 109, 1505.
15 (a) J. Kumar, L. Li, X. L. Jiang, D. Y. Kim, T. S. Lee and S. Tripathy,
Appl. Phys. Lett., 1998, 72, 2096; (b) S. Bian, J. Williams, D. Kim,
L. Li, S. Balasubramanian, J. Kumar and S. Tripathy, J. Appl.
Phys., 1999, 86, 4498.
16 T. G. Pedersen, P. M. Johansen, N. C. R. Holme and
P. S. Ramanujam, Phys. Rev. Lett., 1998, 80, 89.
17 P. Lefin, C. Fiorini and J. Nunzi, Pure Appl. Opt., 1998, 7, 71.
18 O. M. Tanchak and C. J. Barrett, Macromolecules, 2005, 38, 10566.
19 K. G. Yager, O. M. Tanchak, C. Godbout, H. Fritzsche and
C. J. Barrett, Macromolecules, 2006, 39, 9311.
20 K. G. Yager and C. J. Barrett, Macromolecules, 2006, 39, 9320.
21 (a) Y. Shirota, J. Mater. Chem., 2000, 10, 1; (b) Y. Shirota, J. Mater.
Chem., 2005, 15, 75.
Conclusions
€
22 E. Ishow, C. Bellaıche, L. Bouteiller, K. Nakatani and J. A. Delaire, J.
Am. Chem. Soc., 2003, 125, 15744.
A series of nunchaku-like azo compounds (AZBP-X, X ¼ CA,
CN, and NT) was synthesized in this work. The materials showed
amorphous solid behavior at room temperature without special
treatment such as quenching. The type of the electron-
withdrawing groups of the azo chromophores played an impor-
tant role to influence the photoresponsive abilities of the
materials. Some of the materials (such as AZBP-CA) showed
a very sensitive response to the light irradiation as exhibited by
the photoinduced birefringence, dichroism, and SRG formation.
In contrast to azo polymers, when the irradiating light was
switched off, no orientation relaxation occurred and the bire-
fringence even increased slightly. SRG on the AZBP-CA film
showed a high diffraction efficiency of 27% for the probed beam.
The nunchaku-like molecules as an amorphous material are
promising for the high PIA efficiency, rapid SRG formation rate
and large surface modulation. The molecular design using the
flexible aliphatic spacer between the functional and rigid units
can be further explored for materials development and better
understanding of the structure–property relationship.
23 Y. Shirota, K. Moriwaki, S. Yoshikawa, T. Ujike and H. Nakano, J.
Mater.Chem., 1998, 8, 2579.
24 (a) A. Perschke and T. Fuhrmann, Adv. Mater., 2002, 14, 841; (b)
T. Fuhrmann and T. Tsutsui, Chem. Mater., 1999, 11, 2226.
25 (a) M. Kim, E. Seo, D. Vak and D. Kim, Chem. Mater., 2003, 15,
4021; (b) C. Chun, M. Kim, D. Vak and D. Kim, J. Mater. Chem.,
2003, 13, 2904.
26 (a) H. Utsumi, D. Nagahama, H. Nakano and Y. Shirota, J. Mater.
Chem., 2000, 10, 2436; (b) H. Utsumi, D. Nagahama, H. Nakano and
Y. Shirota, J. Mater. Chem., 2002, 12, 2612.
27 (a) H. Ando, T. Tanino, H. Nakano and Y. Shirota, Mater. Chem.
Phys., 2009, 113, 376; (b) H. Nakano, T. Takahashi, T. Kadota and
Y. Shirota, Adv. Mater., 2002, 14, 1157; (c) H. Nakano, T. Tanino,
T. Takahashi, H. Ando and Y. Shirota, J. Mater. Chem., 2008, 18,
242; (d) T. Tanino, S. Yoshikawa, T. Ujike, D. Nagahama,
K. Moriwaki, T. Takahashi, Y. Kotani, H. Nakano and Y. Shirota,
J. Mater. Chem., 2007, 17, 4953.
28 E. Ishow, B. Lebon, Y. He, X. Wang, L. Bouteiller, L. Galmiche and
K. Nakatani, Chem. Mater., 2006, 18, 1261.
29 A. S. Matharu, S. Jeeva, P. R. Huddleston and P. S. Ramanujam, J.
Mater. Chem., 2007, 17, 4477.
30 Y. He, X. Gu, M. Guo and X. Wang, Opt. Mater., 2008, 31, 18.
31 A. C. Griffin and T. R. Britt, J. Am. Chem. Soc., 1981, 103, 4957.
32 C. T. Imrie, in Structure and Bonding, Springer Verlag Berlin
Heidelberg, 1999, vol. 95,pp. 149–192.
33 C. T. Imrie and P. A. Henderson, Chem. Soc. Rev., 2007, 36, 2096.
34 Y. N. He, X. G. Wang and Q. X. Zhou, Polymer, 2002, 43, 7325.
35 M. Kim, J. Lee, C. Chun, D. Kim, S. Higuchi and T. Nakayama,
Macromol. Chem. Phys., 2007, 208, 1753.
36 C. Chun, E. Seo, M. J. Kim, Y. Shin, J. Lee and D. Y. Kim, Opt.
Mater., 2007, 29, 970.
Acknowledgements
The financial support from the NSFC under Projects 50533040
and 20774055 is gratefully acknowledged.
37 Y. L. Wu, Y. Demachi, O. Tsutsumi, A. T. Kanazawa, A. Shiono and
T. Ikeda, Macromolecules, 1998, 31, 349.
Notes and references
38 Y. B. Li, Y. H. Deng, Y. N. He, X. L. Tong and X. G. Wang,
Langmuir, 2005, 21, 6567.
39 Y. N. He, X. G. Wang and Q. X. Zhou, Synth. Met., 2003, 132, 245.
40 F. L. Labarthet, T. Buffeteau and C. Sourisseau, J. Phys. Chem. B,
1998, 102, 2654.
1 G. S. Kumar and D. C. Neckers, Chem. Rev., 1989, 89, 1915.
2 H. Rau, in Photochemistry and Photophysics, ed. J. F. Rabek, CRC
Press, Boca Raton, 1990, vol. II, (ch. 4).
3 A. Natansohn, P. Rochon, J. Grosselin and S. Xie, Macromolecules,
1992, 25, 2268.
4 S. Xie, A. Natansohn and P. Rochon, Chem. Mater., 1993, 5, 403.
41 A. Sobolewska and A. Miniewicz, J. Phys. Chem. B, 2007, 111, 1536.
This journal is ª The Royal Society of Chemistry 2010
J. Mater. Chem., 2010, 20, 10680–10687 | 10687