J. Bicker et al. / Fitoterapia 80 (2009) 483–495
487
[d, J=2.6 Hz, H-2 (F)], 6.25 [s, H-6 (D)], 6.43 [d, J=2.2 Hz,
H-6 (A)], 6.52 [d, J=2.2 Hz, HR-6 (A)], 6.59 [s, HR-6 (D)],
6.59 [s, HR-6 (G)], 6.62 [s, H-6 (G)], 6.72 [d, J=2.2 Hz, H-8 (A)],
6.85 [d, J=2,2 Hz, HR-8 (A)], 7.04 [dd, J=2.0 and 8.5 Hz, H-6′
(E)], 7.05 [dd, J=2.0 and 8.5 Hz, H-6′ (H)], 7.08 [d, J=8.5 Hz,
H-5′ (E)], 7.13–7.14 [m, HR-5′ (E), HR-5′ (H) and HR-6′ (H)],
7.19 [d, J=2.0 Hz, H-2′ (E)], 7.21 [d, J=2.0 Hz, H-2′ (H)],
7.23 [m, HR-2′ (H) and HR-5′ (B)], 7.26 [d, J=2.0 Hz, HR-2′
(E)], 7.27 [d, J=8.5 Hz, HR-5′ (B)], 7.28 [d, J=8.5 Hz, H-5′
(H)], 7.39 [d, J=2.1 Hz, H-2′ (B)], 7.47 [d, J=2.1 Hz, HR-2′
(B)], 7.50 [dd, J=2.1 and 8.6 Hz, H-6′ (B)], 7.57 [dd, J=2.1
and 8.6 Hz, HR-6′ (B)]; 13C NMR (CDCl3, 150 MHz): δ 19.4–
21.2 [–CO–CH3], 26.15 [C-4 (I)], 26.30 [CR-4 (I)], 27.38 [C-4
(C) and CR-4 (C)], 33.44 [C-4 (F)], 33.61 [CR-4 (F)], 66.34 [C-3
(I)], 66.70 [C-3 (C)], 67.90 [CR-3 (C)], 69.73 [CR-3 (F)], 70.47
[C-3 (F)], 75.33 [C-2 (F)] 75.50 [CR-2 (F)], 76.69 [C-2 (I)],
97.78 [CR-2(C)], 98.26 [C-2(C)], 104.17 [CR-6 (D)], 104.77
[C-6 (D)], 106.65 [C-8 (A)], 107.10 [CR-8 (A)], 107.29 [CR-4a
(D)], 108.16 [CR-8 (D)], 108.44 [C-8 (D)], 108.73 [CR-4a (D)],
109.70 [C-6 (A)], 109.77 [CR-6 (A)], 109.92 [CR-4a (G)],
110.26 [C-6 (G)], 110.83 [CR-6 (G)], 110.95 [C-4a (G)],
113.05 [CR-4a (A)], 114.18 [C-4a (A)], 116.67 [C-8 (G)],
117.80 [CR-8 (G)], 121.36 [CR-2′ (H)], 121.73 [C-2′ (H)],
122.08 [CR-5′ (E)], 122.80 [C-2′ (B)], 122.82 [C-5′ (B)], 122.99
[CR-2′ (B) and C-5′ (E)], 123.03 [CR-5′ (B)], 123.21 [C-5′ (H)],
123.31 [CR-5′ (H)], 123.59 [CR-6′ (H)], 123.67 [C-2′ (E)],
124.27 [C-6′ (H)], 124.34 [CR-2′ (E)], 125.26 [CR-6′ (B)],
125.50 [C-6′ (E)], 125.53 [C-6′ (B)], 125.94 [CR-6′ (E)], 134.77
[CR-1′ (E)], 134.82 [C-1′ (H)], 135.29 [CR-1′ (B)], 135.36 [C-1′
(E)], 135.39 [C-1′ (B)], 135.46 [CR-1′ (H)], 141.45–143.02
[C-3′/4′ and CR-3′/4′ (B, E, H)], 148.55 [C-7 (G)], 148.58 [CR-7
(G)], 148.10 and 148.13 [C-5/7 (D) or C-5 (A)], 148.55 [C-5 (G)],
148.58 [CR-5 (G)], 148.77 [CR-5 (A)], 149.45 [C-7 (A)], 149.61
and 144.66 [C-5/7 (D)], 150.17 or 150.20 [C-5/7 or CR-7 (A)],
151.88 and 151.92 [CR-8a (G) or C-8a (D)], 152.20 [CR-8a (D)],
153.36 [C-8a (G)], 153.85 [CR-8a (A)], 154.09 [C-8a (A)], 167.6–
170.51 [–CO–CH3].
123.02 [C-2′ (B and E)], 124.74 [C-5′ (B)], 125.30 [C-6′ (B)],
126.15 [C-6′ (E)], 134.70 [C-1′ (E)], 135.23 [C-1′ (B)],
141.64–143.02 [C-3′/4′ (B and E)], 148.69–150.41 [C-5/7 (A
and D); C-1/3/5 (G)], 152.04 [C-8a (D)], 155.57 [C-8a (A)],
168–172 [–CO–CH3].
2.3.9. Epicatechin-(2β→7, 4β→8)-epiafzelechin-(4α→8)-
epicatechin (24)
Compound 24 (10 mg) was peracetylated for analytical
investigation to epicatechin-(2β→7, 4β→8)-epiafzelechin-
(4α→8)-epicatechin-peracetate (24a, 18 mg): [α]2D0
=
+10.36° (c=1.93); ESI-MS: [M+NH3]+ m/z 1412.4 [M+
Na]+ m/z 1417.6; [V]210 -52052, [V]232 25372, [V]250 1049,
[V]270 14171, [V]280 -7602; 1H NMR (CDCl3, 600 MHz, dup-
lication due to dynamic rotational isomerism; two sets of
signals in the ratio ca 1:1): δ 1.4–2.36 [3H, all s, aliphatic and
phenolic –OAc], 2.90–3.06 [m, H-4a,b and HR-4a,b (I)], 4.29
[d, J=4.8 Hz, H-4 (F)], 4.35 [d, J=4.1 Hz, H-4 (C)], 4.62
[d, J=4.8 Hz, HR-4 (F)], 4.63 [d, J=4.1 Hz, HR-4 (C)], 4.80
[brs, H-2 (I)], 5.00 [d, J=4.1 Hz, H-3 (C)], 5.01 [d, J=4.1 Hz,
HR-3 (C)], 5.18 [brs, HR-2 (I)], 5.18 [m, HR-3 (F)], 5.21 [m, H-3
(I)], 5.39 [m, H-3 (F) and HR-2 (F)], 5.51 [m, HR-3 (I)], 5.71
[d, J=2.3 Hz, H-2 (F)], 6.24 [s, H-6 (D)], 6.45 [d, J=2.2 Hz,
H-6 (A)], 6.55 [d, J=2.2 Hz, HR-6 (A)], 6.59 [s, HR-6 (G)],
6.60 [s, HR-6 (D)], 6.62 [s, H-6 (G)], 6.73 [d, J=2.2 Hz, H-8 (A)],
6.86 [d, J=2.2 Hz, HR-8 (A)], 7.01 [d, J=8.5 Hz, HR-3′/5′ (E)],
7.04 [d, J=8.5 Hz, H-3′/5′ (E)], 7.05 [dd, J=1.9 and 8.4 Hz, H-6′
(H)], 7.21 [d, J=1.9 Hz, H-2′ (H)], 7.23 [d, J=1.9 Hz, HR-2′ (H)],
7.23 [d, J=8.6 Hz, H-5′ (B)], 7.25 [d, J=8.5 Hz, HR-2′/6′ (E)],
7.27 [d, J=8.6 Hz, HR-5′ (B)], 7.29 [d, J=8.4 Hz, H-5′ (H)], 7.40
[d, J=8.5 Hz, H-2′/6′ (E)], 7.41 [d, J=2.1 Hz, H-2′ (B)], 7.48
[d, J=2.1 Hz, HR-2′ (B)], 7.51 [dd, J=2.1 and 8.6 Hz, H-6′ (B)],
7.57 [dd, J=2.1 and 8.6 Hz, HR-6′ (B)], 13C NMR (CDCl3,
150 MHz): δ 19–22 [–COCH3], 26.21 [C-4 (I)], δ 26.31 [CR-4 (I)],
27.36 [C-4 (C)], 27.39 [CR-4 (C)], 33.56 [C-4 (F)], 33.85 [CR-4
(F)], 66.34 [C-3 (I)], 66.40 [CR-3 (I)], 66.73 [C-3 (C)], 67.84 [CR-3
(C)], 70.18 [CR-3 (F)], 70.70 [C-3 (F)], 75.67 [C-2 (F)], 75.91
[CR-2 (F)], 76.69 [C-3 (I)], 97.68 [CR-2 (C)], 98.21 [C-2 (C)],
104.12 [C-6 (D)], 104.71 [CR-6 (D)], 106.80 [C-8 (A)], 107.32
[CR-8 (A)], 107.50 [CR-4a (D)], 108.30 [C-8 (D)], 108.45 [CR-8 (D)],
108.84 [C-4a (D)], 109.65 [C-6 (A)], 109.78 [CR-6 (A)], 109.88
[C-4a (G)], 110.20 [C-6 (G)], 110.83 [CR-6 (G)], 110.86 [CR-4a
(G)], 113.10 [CR-4a (A)], 114.17 [C-4a (A)], 116.74 [C-8 (G)],
117.91 [CR-8 (G)], 121.14 [CR-3′/5′ (E)], 121.28 [C-3′/5′ (E)],
121.35 [CR-2′ (H)], 121.66 [C-2′ (H)], 122.82 [C-2′ (B)],
122.99 [CR-2′ (B)], 123.03 [C-5′ (B)], 123.21 [C-5′ (H)],
123.29 [CR-5′ (H)], 124.23 [C-6′ (H)], 125.25 [CR-6′ (B)],
125.54 [C-6′ (B)], 128.47 [CR-2′/6′ (E)], 128.85 [C-2′/6′ (E)],
133.67 [C-1′ (E)], 134.28 [CR-1′ (E)], 134.784 [C-1′ (H)],
135.33 [C-1′ (B)], 135.41 [CR-1′ (B)], 135.52 [CR-1′ (H)],
141.45–143.23 [C-3′/4′ (B, H)], 147.58 [C-7 (G)], 147.76 [CR-
7 (G)], 148.09 [CR-5 (D)], 148.25 [C-5 (D)], 148.51 [CR-5
(G)], 148.55 [C-5 (G)], 149.58 [C-7 (D)], 150.20 [C-5/7 (A)],
150.78 [CR-4′ (E)], 150.99 [C-1′ (E)], 151.87 [C-8a (G)],
152.11 [CR-8a (D)], 152.40 [C-8a (D)], 153.37 [CR-8a (G)],
153.83 [CR-8a (A)], 154.12 [C-8a (A)], 168–172 [–CO–CH3].
Degradation of 20 mg 23 with 30 mg phloroglucinol
in 2 ml 1% ethanolic HCl yielded epicatechin (2) and 29,
which were purified using a Sephadex® LH-20 column
(25×80 mm) with first 300 ml EtOH, then 300 ml MeOH.
Compound 29 (12 mg) was peracetylated for analytical in-
vestigation to epicatechin-(2β→7, 4β→8)-epicatechin-
(4β→8)-phloroglucinol-peracetate (29a, 14 mg: [α]2D0
=
+106.82° (c=0.44); ESI-MS: [M+Na]+ m/z 1127.5.; [V]210
-34546, [V]230 67077, [V]250 5536, [ ]270 22775, [V]284 -3387;
1H NMR (CDCl3, 400 MHz): δ 1.56–2.33 [3H, all s, aliphatic
and phenolic –OAc], 4.42 [d, J=3.2 Hz, H-4 (F)], 4.60 [d, J=
4.2 Hz, H-4 (C)], 5.01 [d, J=4.2 Hz, H-3 (C)], 5.02 [dd, J=1.6
and 3.2 Hz, H-3 (F)], 5.52 [d, J=1.6 Hz, H-2 (F)], 6.50
[d, J=2.4 Hz, H-6 (A)], 6.55 [s, H-6 (D)], 6.84 [d, J=2.4 Hz,
H-4/6 (G)], 6.85 [d, J=2.4 Hz, H-8 (A)], 6.94 [d, J=2.4 Hz, H-
6/4 (G)], 7.13 [d, J=8.2 Hz, H-5′ (E)], 7.20 [dd, J=2.0
and 8.2 Hz, H-6′ (E)], 7.26 [d, J=2.0 Hz, H-2′ (E)], 7.27
[d, J=8.2 Hz, H-5′ (B)], 7.48 [d, J=2.0 Hz, H-2′ (B)], 7.58
[dd, J=2.0 and 8.2 Hz, H-6′ (B)]; 13C NMR (CDCl3, 100 MHz):
δ 19–21 [–CO–CH3], 27.29 [C-4 (C)], 33.82 [C-4 (F)], 67.76
[C-3 (C)], 70.14 [C-3 (F)], 75.22 [C-2 (F)], 97.75 [C-2 (C)],
104.15 [C-6 (D)], 106.71 [C-4a (F)], 107.20 [C-8 (A)], 109.70
[C-6 (A)], 113.06 [C-4a (A)], 114,39 [C-4/6 (G)], 115.24 [C-6/4
(G)], 118.59 [C-8 (D)], 120.24 [C-2 (G)], 122.82 [C-5′ (E)],
2.3.10. Epicatechin-3-O-gallate-(2β→7, 4β→8)-epicatechin-
(4β→8)-epicatechin (25)
Compound 25 (20 mg) was peracetylated for analytical
investigation to epicatechin-3-O-gallate-(2β→7, 4β→8)-