Article
Inorganic Chemistry, Vol. 50, No. 4, 2011 1421
have been limited.8 One of the main reasons for this is that the
multisite coordination capability of the phosphonate ligands
generally leads to the formation of insoluble compounds.2
Synthetically, this difficulty has been addressed by different
strategies. We and others have used appropriate ancillary
ligands which occupy and block a certain number of coordi-
nation sites on the transition metal ion.8 As a result, the
number of coordination sites that are accessible for the phos-
phonate ligand are limited and soluble products can be
isolated. By using this methodology we had initially prepared
a lipophilic dodecanuclear Cu(II) phosphonate cage;8a sub-
sequently different types of molecular metal phosphonates
with varying nuclearity have been assembled.8 A second
strategy is to use a sterically hindered lipophilic phosphonic
acid with or without the use of an ancillary ligand.9 Many
main-group element phosphonates and transition metal
phosphonates have been prepared by this method.9,10 The
combination of a sterically hindered phosphonic acid with an
appropriate ancillary ligand is also an excellent method to
limit the size of the metal phosphonate aggregate.11 Most of
these synthetic strategies, however, do not lead to predictable
assemblies. While the above synthetic methodology, also
known as the serendipity approach12 (because the final out-
come of the product cannot be predicted), has a demon-
strated utility, it is also important to come up with rational
strategies that can lead to a predictable outcome. One
promising approach that can lead to a rational outcome is
the use of preformed metal aggregates as precursors. Reac-
tions of trinuclear metal carboxylates [M3O(O2CR)6(H2O)3]-
X (M=Mn, Fe, V, Cr; R=H, CH3, Ph, t-Bu; X=NO3-, Cl-)
with phosphonate ligands have been shown to generate larger
metal aggregates although the size and structure of the latter
still could not be predicted with certainty.13 In view of our
interest in molecular copper(II) phosphonates8a-g,j,k we were
interested in exploring the use of precursors that would lead
to a single predictable product. We reasoned that if the
starting precursor had only one labile ligand, such as a
carboxylate (RCO2)-, replacement of this with a phospho-
nate (RPO3)2- can lead to a controlled expansion of the size
of the aggregate since the phosphonate ligand contains an
additional donor oxygen to bind. We tested our hypothesis
by the reaction of various phosphonic acids with two di-
nuclear copper(II) complexes {[Cu2(L)(OAc)] (H3L = 1,3-
bis(salicylideneamino)propan-2-ol) and [Cu2(L0)(OAc)]
(H3L0 =1,3-bis(4,5-dimethylsalicylideneamino)propan-2-ol)};
the lability of the acetate ligand in these complexes has been
demonstrated before.14 Accordingly, in this manuscript we
describe the synthesis, structural characterization and mag-
netic studies of the tetranuclear copper(II) phosphonates
[Cu4(L)2(t-BuPO3)](CH3OH)2(C6H6) (1), [Cu4(L)2(PhPO3)-
(H2O)2(NMe2CHO)](H2O)2 (2), Cu4(L0)2(C5H9PO3)](CH3-
OH)2 (3), [Cu4(L0)2(C6H11PO3](MeOH)4(H2O)2 (4) and [Cu4-
(L0)2(C30H46P2O5)](PhCH3) (5).
(8) (a) Chandrasekhar, V.; Kingsley, S. Angew. Chem., Int. Ed. 2000, 39,
2320. (b) Chandrasekhar, V.; Kingsley, S.; Vij, A.; Lam, K. C.; Rheingold, A. L.
Inorg. Chem. 2000, 39, 3238. (c) Chandrasekhar, V.; Kingsley, S.; Rhatigan, B.;
Lam, M. K.; Rheingold, A. L. Inorg. Chem. 2002, 41, 1030. (d) Chandrasekhar,
ꢁ
V.; Nagarajan, L.; Clerac, R.; Ghosh, S.; Verma, S. Inorg. Chem. 2008, 47, 1067.
(e) Chandrasekhar, V.; Azhakar, R.; Senapati, T.; Thilagar, P.; Ghosh, S.; Verma,
€
S.; Boomishankar, R.; Steiner, A.; Kogerler, P. Dalton Trans. 2008, 1150.
ꢁ
(f) Chandrasekhar, V.; Nagarajan, L.; Clerac, R.; Ghosh, S.; Senapati, T.; Verma,
~
S. Inorg. Chem. 2008, 47, 5347. (g) Chandrasekhar, V.; Senapati, T.; Sanudo,
E. C. Inorg. Chem. 2008, 47, 9553. (h) Langley, S. J.; Helliwell, M.; Sessoli, R.;
Rosa, P.; Wernsdorfer, W.; Winpenny, R. E. P. Chem. Commun. 2005, 5029.
(i) Du, Z.-Y.; Li, X.-L.; Liu, Q.-Y.; Mao, J.-G. Cryst. Growth Des. 2007, 7, 1501.
~
ꢁ
(j) Chandrasekhar, V.; Senapati, T.; Sanudo, E. C.; Clerac, R. Inorg. Chem. 2009,
ꢁ
48, 6192. (k) Chandrasekhar, V.; Senapati, T.; Clerac, R. Eur. J. Inorg. Chem.
2009, 1640.
Experimental Section
ꢁ
(9) (a) Baskar, V.; Shanmugam, M.; Sanudo, E. C.; Collison, D.;
Reagents and General Procedures. All the reagents and the
chemicals were purchased from commercial sources and were
used without further purification. The compounds 1,3-bis(salic-
ylideneamino)propan-2-ol (H3L),15 1,3-bis(4,5-dimethylsalicy-
lideneamino)propan-2-ol (H3L0)15 (Scheme 1), t-BuPO3-
H2,16 cyclopentylphosphonic acid,16 cyclohexylphosphonic
McInnes, E. J. L.; Wei, Q.; Winpenny, R. E. P. Chem. Commun. 2007, 37.
ꢁ
(b) Khanra, S.; Kloth, M.; Mansaray, H.; Muryn, C. A.; Tuna, F.; Sanudo, E. C.;
Helliwell, M.; McInnes, E. J. L.; Winpenny, R. E. P. Angew. Chem., Int. Ed.
2007, 46, 5568. (c) Chandrasekhar, V.; Sasikumar, P.; Boomishankar, R.;
Anantharaman, G. Inorg. Chem. 2006, 45, 3344.
(10) (a) Walawalkar, M. G.; Roesky, H. W.; Murugavel, R. Acc. Chem.
Res. 1999, 32, 117. (b) Chakraborty, D.; Horchler, S.; Kraetzner, R.; Varkey, S. P.;
Pinkas, J.; Roesky, H. W.; Uson, I.; Noltemeyer, M.; Schmidt, H.-G. Inorg. Chem.
ꢁ
2001, 40, 2620. (c) Walawalkar, M. G.; Murugavel, R.; Roesky, H. W.; Uson, I.;
(13) (a) Figgis, B. N.; Robertson, G. B. Nature 1965, 205, 649.
(b) Anzenhofer, K.; De Boer, J. J. Recl. Trav. Chim. Pays-Bas 1969, 88, 286.
(c) Hessel, L. W.; Romers, C. Recl. Trav. Chim. Pays-Bas 1969, 88, 545.
(d) Blake, A. B.; Fraser, L. R. Dalton Trans. 1975, 193. (e) Castro, S. L.; Streib,
W. E.; Sun, J.-S.; Chritou, G. Inorg. Chem. 1996, 35, 4462. (f) Ribas, J.; Albela,
B.; Stoeckli-Evans, H.; Chritou, G. Inorg. Chem. 1997, 36, 2352. (g) Wu, R.;
Poyraz, M.; Sowrey, F. E.; Anson, C. E.; Wocadlo, S.; Powell, A. K.; Jayasooriya,
U. A.; Cannon, R. D.; Nakamoto, T.; Katada, M.; Sano, H. Inorg. Chem. 1998, 37,
1913. (h) Brechin, E. K.; Coxall, R. A.; Parkin, A.; Parsons, S.; Taskar, P. A.;
Winpenny, R. E. P. Angew. Chem., Int. Ed. 2001, 40, 2700. (i) Shanmugam, M.;
Shanmugam, M.; Chastanet, G.; Sessoli, R.; Mallah, T.; Wernsdorfer, W.;
Winpenny, R. E. P. J. Mater. Chem. 2006, 16, 2576. (j) Shanmugam, M.;
Chastanet, G.; Mallah, T.; Sessoli, R.; Teat, S. J.; Timco, G. A.; Winpenny, R. E. P.
Chem.;Eur. J. 2006, 12, 8777. (k) Shanmugam, M.; Chastanet, G.; Teat, S. J.;
Mallah, T.; Sessoli, R.; Wernsdorfer, W.; Winpenny, R. E. P. Angew. Chem., Int.
Ed. 2005, 44, 5044. (l) Tolis, E. I.; Helliwell, M.; Langley, S.; Raftery, J.;
Winpenny, R. E. P. Angew. Chem., Int. Ed. 2003, 42, 3804.
(14) (a) Mukherjee, A.; Saha, M. K.; Rudra, I.; Ramasesha, S.; Nethaji,
M.; Chakravarty, A. R. Inorg. Chim. Acta 2004, 357, 1077. (b) Mukherjee, A.;
Saha, M. K.; Nethaji, M.; Chakravarty, A. R. Polyhedron 2004, 23, 2177.
(c) Geetha, K.; Tiwary, S. K.; Chakravarty, A. R.; Ananthakrishna, G. J. Chem.
Soc., Dalton Trans. 1999, 4463.
(15) Nishida, Y.; Kida, S. J. Chem. Soc., Dalton Trans. 1986, 2633.
(16) (a) Crofts, P. C.; Kosolapoff, G. M. J. Am. Chem. Soc. 1953, 75, 3379.
(b) Bengelsdorf, I. S.; Barron, L. B. J. Am. Chem. Soc. 1955, 77, 2869.
(17) Whitesides, G. M.; Eisenhut, M.; Bunting, W. M. J. Am. Chem. Soc.
1974, 96, 5399.
Kraetzner, R. Inorg. Chem. 1998, 37, 473. (d) Breeze, B. A.; Shanmugam, M.;
Tuna, F.; Winpenny, R. E. P. Chem. Commun. 2007, 5185. (e) Walawalkar, M. G.;
Murugavel, R.; Voigt, A.; Roesky, H. W.; Schmidt, H.-G. J. Am. Chem. Soc.
1997, 119, 4656. (f) Anantharaman, G.; Walawalkar, M. G.; Murugavel, R.;
Gabor, B.; Herbst-Irmer, R.; Baldus, M.; Angerstein, B.; Roesky, H. W. Angew.
Chem., Int. Ed. 2003, 42, 4482. (g) Yang, Y.; Pinkas, J.; Noltemeyer, M.;
Schmidt, H.-G.; Roesky, H. W. Angew. Chem., Int. Ed. 1999, 38, 664.
(h) Walawalkar, M. G.; Horchler, S.; Dietrich, S.; Chakraborty, D.; Roesky,
€
H. W.; Schafer, M.; Schmidt, H.-G.; Sheldrick, G. M.; Murugavel, R. Organo-
metallics 1998, 17, 2865.
(11) (a) Chandrasekhar, V.; Sasikumar, P. Dalton Trans. 2008, 6475.
(b) Chandrasekhar, V.; Sasikumar, P.; Boomishankar, R. Dalton Trans. 2008,
5189.
(12) (a) Winpenny, R. E. P. J. Chem. Soc., Dalton Trans. 2002, 1.
(b) Parsons, S.; Winpenny, R. E. P. Acc. Chem. Res. 1997, 30, 89.
(c) Winpenny, R. E. P. Chem. Soc. Rev. 1998, 27, 447. (d) Atkinson, I. M.;
Benelli, C.; Murrie, M.; Parsons, S.; Winpenny, R. E. P. Chem. Commun. 1999,
285. (e) Mabbs, F. E.; McInnes, E. J. L.; Murrie, M.; Parsons, S.; Smith, G. M.;
Wilson, C. C.; Winpenny, R. E. P. Chem. Commun. 1999, 643. (f) Parsons, S.;
Smith, A. A.; Winpenny, R. E. P. Chem. Commun. 1999, 579. (g) Slageren, J. V.;
Sessoli, R.; Gatteschi, D.; Smith, A. A.; Helliwell, M.; Winpenny, R. E. P.; Cornia,
A.; Barra, A.-L.; Jansen, A. G. M.; Rentschler, E.; Timco, G. A. Chem.;Eur. J.
2002, 8, 277. (h) Christian, P.; Rajaraman, G.; Harrison, A.; McDouall, J. J. W.;
Raftery, J. T.; Winpenny, R. E. P. Dalton Trans. 2004, 1511. (i) Chandrasekhar,
€
V.; Nagarajan, L.; Gopal, K.; Baskar, V.; Kogerler, P. Dalton Trans. 2005, 3143.
(j) Chandrasekhar, V.; Nagarajan, L. Dalton Trans. 2009, 6712.