73, 2021–2023; (g) E. Pavlakos, T. Georgiou, M. Tofi,
T. Montagnon and G. Vassilikogiannakis, Org. Lett., 2009, 11,
4556–4559.
2 (a) N. Sofikiti, M. Tofi, T. Montagnon, G. Vassilikogiannakis and
M. Stratakis, Org. Lett., 2005, 7, 2357–2359; (b) I. Margaros,
T. Montagnon, M. Tofi, E. Pavlakos and G. Vassilikogiannakis,
Tetrahedron, 2006, 62, 5308–5317; (c) T. Georgiou, M. Tofi,
T. Montagnon and G. Vassilikogiannakis, Org. Lett., 2006, 8,
1945–1948; (d) M. Tofi, T. Montagnon, T. Georgiou and
G. Vassilikogiannakis, Org. Biomol. Chem., 2007, 5, 772–777;
(e) M. Tofi, K. Koltsida and G. Vassilikogiannakis, Org. Lett.,
2009, 11, 313–316.
3 For reviews on furan photooxygenation see: (a) K. Gollnick and
A. Griesbeck, Tetrahedron, 1985, 41, 2057–2068; (b) B. L. Feringa,
Recl. Trav. Chim. Pays-Bas, 1987, 106, 469–488; (c) T. Montagnon,
M. Tofi and G. Vassilikogiannakis, Acc. Chem. Res., 2008, 41,
1001–1011.
4 T. Yasumoto, M. Murata, Y. Oshima, M. Sano, G. K. Matsumoto
and J. Clardy, Tetrahedron, 1985, 41, 1019–1025.
5 For selected examples see: (a) J. H. Jung, C. J. Sim and C. O. Lee,
J. Nat. Prod., 1995, 58, 1722–1726; (b) K. Sasaki, J. L. C. Wright
and T. Yasumoto, J. Org. Chem., 1998, 63, 2475–2480;
(c) M. Daiguji, M. Satake, K. James, A. Bishop, L. Mackenzie,
H. Naoki and T. Yasumoto, Chem. Lett., 1998, 653–654;
(d) A. L. Wilkins, N. Rehmann, T. R. Torgersen, M. Keogh,
D. Petersen, P. Hess, F. Rise and C. O. Miles, J. Agric. Food
Chem., 2006, 54, 5672–5678; (e) C. O. Miles, A. L. Wilkins,
A. D. Hawkes, D. J. Jensen, A. I. Selwood, V. Beuzenberg,
A. L. MacKenzie, J. M. Cooney and P. T. Holland, Toxicon,
2006, 48, 152–159; (f) P. Kuuppo, P. Uronen, A. Petermann,
´
T. Tamminen and E. Graneli, Limnol. Oceanogr., 2006, 51,
2300–2307.
6 (a) I. Spector, F. Braet, N. R. Schochet and M. R. Bubb, Microsc.
Res. Tech., 1999, 47, 18–37; (b) F. Leira, A. G. Cabadon,
M. R. Vieytes, Y. Roman, A. Alfonso, L. M. Botana,
T. Yasumoto, C. Malaguti and G. P. Rossini, Biochem. Pharmacol.,
2002, 63, 1979–1988.
7 V. Burgess and G. Shaw, Environ. Int., 2001, 27, 275–283.
8 (a) D. A. Evans, H. A. Rajapakse and D. Stenkamp,
Angew. Chem., Int. Ed., 2002, 41, 4569–4573; (b) D. A. Evans,
H. A. Rajapakse, H. A. Chiu and D. Stenkamp, Angew. Chem.,
Int. Ed., 2002, 41, 4573–4576.
9 (a) D. Bondar, J. Liu, T. Muller and L. A. Paquette, Org. Lett.,
2005, 7, 1813–1816; (b) P. D. O’Connor, C. K. Knight,
D. Friedrich, X. Peng and L. A. Paquette, J. Org. Chem., 2007,
72, 1747–1754.
10 (a) R. Halim, M. A. Brimble and J. Merten, Org. Lett., 2005, 7,
2659–2662; (b) R. Halim, M. A. Brimble and J. Merten,
Org. Biomol. Chem., 2006, 4, 1387–1399.
Scheme 4 A mechanistic explanation.
hydroperoxy groups has been attained, but the amount of MeOH
present also becomes static once the opening of the hemiketal to
the 1,4-enedione moiety has been achieved, thus the right moment
for the addition of the p-TsOH is indicated. This final reagent
addition initiates a gross simplification of the reaction’s TLC
profile that has been complex up to this point, as two less polar
(compared to preceding intermediates) spots start to dominate.
In summary, we have designed and successfully executed a
most ambitious singlet oxygen-driven reaction cascade
sequence wherein a simple and readily accessible difuran
precursor is transformed to a complex multiringed motif
found in the pectenotoxin family of natural products. This
sequence perfectly showcases the power singlet oxygen has to
mediate intricate cascade reaction sequences and transform
simple molecules to complex ones with ease and efficiency.
This research was supported by a Marie Curie European
Integration Grant (T.M.), within the 7th European
Community Framework Programme, ELKE of the University
of Crete (K.A. 2949), as well as COST action CM0804.
11 (a) P. M. Pihko and J. E. Aho, Org. Lett., 2004, 6, 3849–3852;
(b) J. E. Aho, E. Salomaki, K. Rissanen and P. M. Pihko,
¨
Org. Lett., 2008, 10, 4179–4182; (c) H. Helmboldt, J. E. Aho and
P. M. Pihko, Org. Lett., 2008, 10, 4183–4185.
12 For a review about all the synthetic studies towards PTXs until
2006, see: R. Halim and M. A. Brimble, Org. Biomol. Chem., 2006,
4, 4048–4058.
13 S. D. Lotesta, Y. Hou and L. J. Williams, Org. Lett., 2007, 9,
869–872.
14 (a) D. Vellucci and S. D. Rychnovsky, Org. Lett., 2007, 9, 711–714;
(b) L. R. Takaoka, A. J. Buckmelter, T. E. La Cruz and
S. D. Rychnovsky, J. Am. Chem. Soc., 2005, 127, 528–529.
15 (a) E. Baciocchi, E. Muraglia and G. Sleiter, J. Org. Chem., 1992,
57, 6817–6820; (b) F. Loiseau, J.-M. Simone, D. Carcache,
P. Bobal and R. Neier, Monatsh. Chem., 2007, 138, 121–129.
16 H. C. Kolb, M. S. VanNieuwenhze and K. B. Sharpless, Chem.
Rev., 1994, 94, 2483–2547.
Notes and references
1 (a) G. Vassilikogiannakis and M. Stratakis, Angew. Chem., Int.
Ed., 2003, 42, 5465–5468; (b) G. Vassilikogiannakis, I. Margaros
and T. Montagnon, Org. Lett., 2004, 6, 2039–2042;
(c) G. Vassilikogiannakis, I. Margaros, T. Montagnon and
M. Stratakis, Chem.–Eur. J., 2005, 11, 5899–5907;
(d) I. Margaros and G. Vassilikogiannakis, J. Org. Chem., 2007,
72, 4826–4831; (e) I. Margaros, T. Montagnon and
G. Vassilikogiannakis, Org. Lett., 2007, 9, 5585–5588;
(f) I. Margaros and G. Vassilikogiannakis, J. Org. Chem., 2008,
17 For the threo, erythro assignment of similar compounds see:
(a) W. Adam and B. Nestler, J. Am. Chem. Soc., 1993, 115,
5041–5049;
(b)
G.
Vassilikogiannakis,
M.
Stratakis,
M. Orfanopoulos and C. S. Foote, J. Org. Chem., 1999, 64,
4130–4139.
18 For detailed NOE studies see supporting information section.
ꢀc
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 259–261 | 261