aryl iodides and bromides. They were converted to aryl
nitriles with the aid of various cyanating agents, for
instance, KCN, NaCN,11 CuCN,12 Zn(CN)2,13 TMSCN,14
and acetone cyanohydrins.15 In fact, aryl chlorides are
superior substrates since they are relatively inexpensive
and usually have a wider spectrum of availability when
compared to bromoarenes and iodoarenes.16 In 2000, Jin
and Confalone reported the first palladium-catalyzed cya-
nation of aryl chlorides.17 This procedure utilized Zn(CN)2
as the cyanating sources and required a high reaction
temperature. In 2007, Littke et al. reported mild cyanation
conditions (95 °C in general) for aryl chlorides using the
Buchwald-type ligand, rac-2-di-tert-butylphosphino-1,10-
binapththyl.18 This cyanation used a Zn(CN)2 source
which is considerably toxic to humans and the environ-
ment.19 Thus efforts in seeking a more environmental-
friendly CN source have emerged. In 2004, Beller and co-
workers introduced the Pd-catalyzed cyanation of aryl
bromides mediated by K4[Fe(CN)6].20,21 The reaction
temperature ranged from 140 to 160 °C. To the best of
our knowledge, there has been limited literature report
regarding cyanation of aryl chlorides mediated by K4[Fe-
(CN)6] under mild reaction conditions.22 Herein, we report
a general palladium-catalyzed cyanation of aryl chlorides.
The reaction temperature of 70 °C is the mildest ever
reported in cyanation reactions.
Figure 1. Selected examples of Pd-catalyzed cyanation of aryl
halides in pharmaceutical applications.
reaction. However, substoichiometric to stoichiometric
nickel complexes are required to drive the reaction.7b
Copper-catalyzed protocols are currently not applicable
for cyanation of aryl chlorides. In 1973, Takagi reported
the first palladium-catalyzed cyanation of aryl halides.9
Since then palladium-based cyanation procedures have
attracted a number of applications in pharmaceutical
syntheses (Figure 1),10 because of their favorable features
in better functional group tolerance, higher catalyst stabil-
ity under air/moisture, and superior catalytic activity.
Recent methodology developments in palladium-
catalyzed cyanation were focused on relatively reactive
We initially investigated the palladium-catalyzed cy-
anation using electronically neutral 4-chlorotoluene as
the benchmark aryl chloride. A series of commercially
(13) For selected references, see: (a) Tshaen, D. M.; Desmond, R.;
King, A. O.; Fortin, M. C.; Pipik, B.; King, S.; Verhoeven, T. R. Synth.
Commun. 1994, 24, 887. (b) Marcantonio, K.; Frey, L. F.; Liu, Y.; Chen, Y.;
Strine, J.; Phenix, B.; Wallace, D. J.; Chen, C.-Y. Org. Lett. 2004, 6, 3723.
(c) Chidambaram, R. Tetrahedron Lett. 2004, 45, 1441. (d) Jensen, R. S.;
Gajare, A. S.; Toyota, K.; Yoshifuji, M.; Ozawa, F. Tetrahedron Lett. 2005,
46, 8645. (e) Chobanian, H. R.; Fors, B. P.; Lin, L. S. Tetrahedron Lett.
2006, 47, 3303. (f ) Buono, F. G.; Chidambaram, R.; Mueller, R. H.;
Waltermire, R. E. Org. Lett. 2008, 10, 5325. (g) see ref 10.
(14) For selected references, see: (a) Sundermeier, M.; Mutyala, S.;
Zapf, A.; Spannenberg, A.; Beller, M. J. Organomet. Chem. 2003, 41,
2911. (b) Nakamura, H.; Shibata, H.; Yamamoto, Y. Tetrahedron Lett. 2000,
41, 2911.
(15) Sundermeier, M.; Zapf, A.; Beller, M. Angew. Chem., Int. Ed.
2003, 42, 1661.
(16) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41, 4176.
(17) Jin, F.; Confalone, P. N. Tetrahedron Lett. 2000, 41, 3271.
(18) Littke, A.; Soumeillant, M.; Kaltenbach, R. F., III; Cherney,
R. J.; Tarby, C. M.; Kiau, S. Org. Lett. 2007, 9, 1711.
(19) Zn(CN)2 [LD50 (oral, rat) = 54 mg/kg]; KCN [LD50 (oral, rat) =
5 mg/kg]. Toxicity data taken from corresponding Material Safety Data
[LD50 (oral, human) = 2.86 mg/kg]; the LD50 of K4[Fe(CN)6] is even
lower than that for NaCl. Toxicity data taken from corresponding
(20) For initial development by the Beller group, see: (a) Schareina,
T.; Zapf, A.; Beller, M. Chem. Commun. 2004, 12, 1388. (b) Schareina, T.;
Zapf, A.; Beller, M. J. Organomet. Chem. 2004, 689, 4576.
(8) For selected references on copper-catalyzed cyanation of aryl
halides (ArI and ArBr), see: (a) Ren, Y. L.; Liu, Z. F.; Zhao, S.; Tian,
X. Z.; Wang, J. J.; Yin, W. P.; He, S. B. Catal. Commun. 2009, 10, 768.
€
(b) Schareina, T.; Zapf, A.; Magerlein, W.; M€uller, N.; Beller, M. Chem.;
Eur. J. 2007, 13, 6249. (c) Cristau, H.-J.; Ouali, A.; Spindler, J.-F.; Taillefer,
M. Chem.;Eur. J. 2005, 11, 2483. (d) Zanon, J.; Klapars, A.; Buchwald,
S. L. J. Am. Chem. Soc. 2003, 125, 2829.
(9) (a) Takagi, K.; Okamoto, T.; Sakakibara, Y.; Oka, S. Chem. Lett.
1973, 5, 471. (b) Takagi, K.; Okamoto, T.; Yasumasa, S.; Ohno, A.; Oka, S.;
Hayama, H. Bull. Chem. Soc. Jpn. 1975, 48, 3298.
(10) (a) Wang, X.; Zhi, B.; Baum, J.; Chen, Y.; Crockett, R.; Huang,
L.; Eisenberg, S.; Ng, J.; Larsen, R.; Martinelli, M.; Reider, P. J. Org.
Chem. 2006, 71, 4021. (b) Challenger, S.; Dessi, Y.; Fox, D. E.; Hesmondhalgh,
L. C.; Pascal, P.; Pettman, A. J.; Smith, J. D. Org. Process Res. Dev. 2008,
12, 575. (c) Maligres, P. E.; Waters, M. S.; Fleitz, F.; Askin, D. Tetrahedron
Lett. 1999, 40, 8193. (d) Beaudin, J.; Bourassa, D. E.; Bowles, P.; Castaldi,
M. J.; Clay, R.; Couturier, M. A.; Karrick, G.; Makowski, T. W.; McDermott,
R. E.; Meltz, C. N.; Meltz, M.; Phillips, J. E.; Ragan, J. A.; Brown Ripin,
D. H.; Singer, R. A.; Tucker, J. L.; Wei, L. Org. Process Res. Dev. 2003, 7,
873. (e) Wallace, D. J.; Campos, K. R.; Schultz, C. S.; Klapars, A.; Zewge, D.;
Crump, B. R.; Phenix, B. D.; McWilliams, J. C.; Krska, S.; Sun, Y.; Chen,
C.-Y.; Spindler, F. Org. Process Res. Dev. 2009, 13, 84. (f ) Ryberg, P. Org.
Process Res. Dev. 2008, 12, 540. (g) Pitts, M. R.; McCormack, P.; Whittall, J.
Tetrahedron 2006, 62, 4705.
(11) For selected references, see: (a) Sakakibara, Y.; Sasaki, K.;
Okuda, F.; Hokimoto, A.; Ueda, T.; Sakai, M.; Takai, K. Bull. Chem.
Soc. Jpn. 2004, 77, 1013. (b) Sundermeier, M.; Zapf, A.; Beller, M.; Sans, J.
Tetrahedron Lett. 2001, 42, 6707.
(12) For selected references, see: (a) Jia, X.; Yang, D.; Zhang, S.;
Cheng, J. Org. Lett. 2009, 11, 4716. (b) Arvela, R. K.; Leadbeater, N. E.;
Torenius, H. M.; Tye, H. Org. Biomol. Chem. 2003, 1, 1119. (c) Hatsuda, M.;
Seki, M. Tetrahedron 2005, 61, 9908.
(21) For investigations from other research groups, see: (c) Weissman,
S. A.; Zewge, D.; Chen, C. J. Org. Chem. 2005, 70, 1508. (d) Grossman,
O.; Gelman, D. Org. Lett. 2006, 8, 1189. (e) Li, L.-H.; Pan, Z.-L.; Duan,
X.-H.; Liang, Y.-M. Synlett 2006, 2094. (f ) Ren, Y.; Liu, Z.; He, S.; Zhao, S.;
Wang, J.; Niu, R.; Yin, W. Org. Process Res. Dev. 2009, 13, 764. (g) Yeung,
P. Y.; So, C. M.; Lau, C. P.; Kwong, F. Y. Angew. Chem., Int. Ed. 2010, 49,
ꢀ
ꢀ
ꢀ
ꢀ ꢁ
8918. (h) Stepnicka, P.; Schulz, J.; Klemann, T.; Siemeling, U.; Císarova, I.
Organometallics 2010, 29, 3187. (i) Yan, G.; Kuang, C.; Zhang, Y.; Wang, J.
Org. Lett. 2010, 12, 1052.
ꢁ
(22) Schareina, T.; Jackstell, R.; Schulz, T.; Zapf, A.; Cotte, A.;
Gotta, M.; Beller, M. Adv. Synth. Catal. 2009, 351, 643.
Org. Lett., Vol. 13, No. 4, 2011
649