H. Zhang et al. / Tetrahedron Letters 52 (2011) 349–351
351
COOMe
Supplementary data
Cs2CO3
DMF
+
(1)
O
N
Br
N
H
OH
Supplementary data (all experimental procedures and spectro-
scopic data of new compounds) associated with this article can
Me
Me
5
COOMe
COOMe
Cs2CO3
DMF
References and notes
N
+
(2)
O
N
H
Br
OH
F3C
1. Eicher, T.; Hauptmann, S. The Chemistry of Heterocycles: Structure, Reactions,
Syntheses, and Applications, 2nd ed.; Wiley-VCH: Weinheim, 2003.
2. (a) McClinton, M. A.; McClinton, D. A. Tetrahedron 1992, 48, 6555; (b) Arnone,
A.; Berrnardi, R.; Blasco, F.; Cardillo, R.; Resnati, G.; Gerus, I. I.; Kukhar, V. P.
Tetrahedron 1998, 54, 2809; (c) Ojima, I.; McCarthy, J. R.; Welch, J. T. In
Biomedical Frontiers of Fluorine Chemistry, American Chemical Society
Symposium Series #639, American Chemical Society: Washington, DC, 1996.;
(d) Soloshonok, V. A. Enantiocontrolled Synthesis of Fluoro-organic Compounds;
Wiley: Chichester, 1999.
3. (a) Welch, J. T.; Eswarakrishnan, A. Fluorine in Bioorganic Chemistry; Wiley: New
York, 1991; (b) Resnati, G.; Soloshonik, V. A., Fluoroorganic Chemistry: Synthesis
Challenge and Biomedical Rewards. Tetrahedron Symposium-in-Print No. 58
1996, 52, 1.
CF3
COOMe
1
80% d.r. 99:1
Scheme 2. Parallel reactions of
L
-prolinol with 5 and 1.
worth noting that L-cysteine methyl ester is also an effective nucle-
ophile in this reaction and thiazolidine derivative was obtained in
70% yield with 99:1 dr (Table 3, entry 9). The absolute configura-
tion of compound 5c was determined by X-ray diffraction of a sin-
gle crystal of its reduction product (see Supplementary data).14
To probe the effect of the trifluoromethyl group on this reaction,
two parallel reactions of
block 1 were conducted under otherwise identical reaction condi-
tions. As shown in Scheme 2, reaction of -prolinol with 1 occurred
to completion after 5 h to give the CF3-substituted oxazolines in
high yield and excellent diastereoselectivity (Eq. 1). In contrast,
no oxazoline was detected by GC/MS for the reaction of substrate
5 (Eq. 2). We proposed that the presence of strong electron-with-
drawing trifluormethyl group enhances the acidity of the methy-
lene proton neighbor to CF3 group. As a result, elimination of HBr
from T2 to form intermediate T3 is faster than intramolecular
nucleophilic substitution (Fig. 1). Consequently, the second Mi-
chael reaction occurs to provide the final product oxazolidines in
good yields.
4. Andrew, R. J.; Mellor, J. M. Tetrahedron 2000, 56, 7267. and references therein.
5. (a) Lin, P.; Jiang, J. Tetrahedron 2000, 56, 3635; (b) Jiang, J.; Shah, H.; Devita, R. J.
Org. Lett. 2003, 5, 4101.
L-prolinol with substrate 5 and building
6. (a) Ramachandran, P. V. In Asymmetric Fluoroorganic Chemistry: Synthesis,
Applications, and Future Directions, American Chemical Society Symposium
Series 746, American Chemical Society: Washington, DC, 2000.; (b)
Abouabdellah, A.; Bégué, J.; Bonnet-Delpon, D. Synlett 1996, 399; (c)
Abouabdellah, A.; Bégué, J.; Bonnet-Delpon, D.; Nga, T. T. T. J. Org. Chem.
1997, 62, 8826; (d) Crousse, B.; Bégué, J.; Bonnet-Delpon, D. J. Org. Chem. 2000,
65, 5009; (e) Crousse, B.; Narizuka, S.; Bonnet-Delpon, D.; Bégué, J. Synlett 2001,
679; (f) Gille, S.; Ferry, A.; Billard, T.; Langlois, B. R. J. Org. Chem. 2003, 68, 8932;
(g) Bariau, A.; Roblin, J.; Troin, Y.; Canet, J. Synlett 2005, 1731; (h) Bariau, A.;
Jatoi, W. B.; Calinaud, P.; Troin, Y.; Canet, J. Eur. J. Org. Chem. 2006, 3421; (i)
Dobbs, A. P.; Parker, R. J.; Skidmore, J. Tetrahedron Lett. 2008, 49, 827; (j) Jatoi,
W. B.; Bariau, A.; Esparcieux, C.; Figueredo, G.; Troin, Y.; Canet, J. Synlett 2008,
1305; (k) Ishii, A.; Higashiyama, K.; Mikami, K. Synlett 1997, 1381; (l) Ma, J. A.;
Cahard, D. Chem. Rev. 2004, 104, 6119; (m) Ma, J. A.; Cahard, D. Chem. Rev. 2008,
108, PR1.
L
7. (a) Uneyama, K.; Katagiri, T.; Amii, H. Acc. Chem. Res. 2008, 41, 817; (b) Bravo,
P.; Crucianelli, M.; Farina, A.; Meille, S. V.; Volonterio, A.; Zanda, M. Eur. J. Org.
Chem. 1998, 435; (c) Jiang, J.; Devita, R. J.; Doss, G. A.; Goulet, M. T.; Wyvrate, M.
J. J. Am. Chem. Soc. 1999, 121, 593; (d) Okano, T.; Fumoto, M.; Kusukawa, T.;
Fujita, M. Org. Lett. 2002, 4, 1571; (e) Pierce, M. E.; Parsons, J. R. L.; Radesca, L.
A.; Lo, Y. S.; Silverman, S.; Moore, J. R.; Islam, Q.; Choudhury, A.; Fortunak, J. M.
D.; Nguyen, D.; Luo, C.; Morgan, S. J.; Davis, W. P.; Confalone, P. N. J. Org. Chem.
1998, 63, 8536; (f) Ogawa, S.; Iida, N.; Tokunaga, E.; Shiro, M.; Shibata, N. Eur.
Chem. J. 2010, 16, 7090.
In conclusion, we have developed a highly diastereoselective
synthesis of optically pure trifluoromethylated imidazolidine, oxa-
zolidine, and thiazolidine derivatives from methyl (Z)-2-bromo-
4,4,4-trifluoro-2-butenoate through double Michael reaction.
These heterocycles containing a trifluoromethyl-substituted qua-
ternary carbon center are otherwise unaccessible. Furthermore,
through parallel reactions of L-prolinol and substrate 5 with build-
8. Slusarczuk, G. M. J.; Joullié, M. M. J. Org. Chem. 1971, 36, 37.
9. (a) Ishii, A.; Miyamoto, F.; Higashiyama, K.; Mikami, K. Tetrahedron Lett. 1998,
39, 1199; (b) Spengler, J.; Schedel, H.; Sieler, J.; Quaedflieg, P. J. L. M.;
Broxterman, Q. B.; Duchateau, A. L. L.; Burger, K. Synthesis 2001, 1513.
10. Rassukana, Y. V.; Kolotylo, M. K.; Sinitsa, O. A.; Pirozhenko, V. V.; Onys’ko, P. P.
Synthesis 2007, 2627.
ing block 1, we concluded that trifluoromethyl group enhances the
acidity of the methylene proton neighbor to CF3 group, conse-
quently, facilitates the formation of intermediate T3 and the sec-
ond Michael addition. Application of this method for the
synthesis of trifluoromethylated analogs of biologically active nat-
ural products is underway.
11. Ishida, Y.; Iwahashi, N.; Nishizono, N.; Saigo, K. Tetrahedron Lett. 2009, 50,
1889.
12. Funabiki, K.; Tamura, K.; Ishihara, T.; Yamanaka, H. Bull. Chem. Soc. Jpn. 1994,
67, 3021.
Acknowledgments
13. Wang, Y.; Zhao, X.; Li, Y.; Lu, L. Tetrahedron Lett. 2004, 45, 7775.
14. CCDC 793449 & 793450 contains the supplementary crystallographic data for
the compound 3a and 4c reported in this Letter. These data can be obtained
free of charge from The Cambridge Crystallographic Data Centre via
The authors gratefully acknowledge the financial support from
the National Natural Science Foundation of China (Grant Number
29825104 and 29632003), the project of Application of Nuclear
Techniques in Agriculture (200803034), the Key Program of Na-
tional Natural Science Foundation of China (20632070), the Na-
tional Basic ResearchProgram of China (2010CB126103), and the
SIOC startup fund (QS) for financial support.
Road, Cambridge CB2
deposit@ccdc.cam.ac.uk].
1
EZ, UK [fax: +44 1223/336 033; email: