Lu Hao et al.
COMMUNICATIONS
substitution and cycloisomerization strategy, see: a) X.
Liu, L. Huang, F. Zheng, Z. Zhan, Adv. Synth. Catal.
2008, 350, 2778–2788; b) Y. Pan, S. Zhao, W. Ji, Z.
Zhan, J. Comb. Chem. 2009, 11, 103–109.
[12] For selected examples of Ag(I)-catalyzed synthesis of
N-containing heterocycles, see: a) K. Ji, X. Shu, S.
Zhao, H. Zhu, Y. Niu, X. Liu, Y. Liang, Org. Lett.
2009, 11, 3206–3209; b) Y. Niu, Z. Yan, G. Gao, H.
Wang, X. Shu, K. Ji, Y. Liang, J. Org. Chem. 2009, 74,
2893–2896; c) I. V. Seregin, A. W. Schammel, V. Ge-
vorgyan, Org. Lett. 2007, 9, 3433–3436; d) J. T. Binder,
S. F. Kirsch, Org. Lett. 2006, 8, 2151–2153.
[6] For recent reviews of Friedel–Crafts reaction, see: a) S.
You, Q. Cai, M. Zeng, Chem. Soc. Rev. 2009, 38, 2190–
2201; b) M. Rueping, B. J. Nachtsheim, Beilstein J. Org.
Chem. 2010, 6, No. 6; c) M. Badini, M. Tragni, Org.
Biomol. Chem. 2009, 7, 1501–1507.
[13] For other groupsꢀ and our research on FeACTHNUGRTENUNG(III)-catalyzed
[7] For selected examples of the Friedel–Crafts reaction of
propargyl alcohols, see: a) Y. Nishibayashi, M. Yoshika-
wa, Y. Inada, M. Hidai, S. Uemura, J. Am. Chem. Soc.
2002, 124, 11846–11847; b) Y. Nishibayashi, Y. Inada,
M. Yoshikawa, M. Hidai, S. Uemura, Angew. Chem.
2003, 115, 1533–1536; Angew. Chem. Int. Ed. 2003, 42,
1495–1498; c) Y. Inada, M. Yoshikawa, M. D. Milton,
Y. Nishibayashi, S. Uemura, Eur. J. Org. Chem. 2006,
881–890; d) H. Matsuzawa, Y. Miyake, Y. Nishibayashi,
Angew. Chem. 2007, 119, 6608–6611; Angew. Chem.
Int. Ed. 2007, 46, 6488–6491; e) H. Matsuzawa, K.
Kanao, Y. Miyake, Y. Nishibayashi, Org. Lett. 2007, 9,
5561–5564; f) M. Yoshimatsu, T. Otani, S. Matsuda, T.
Yamamoto, A. Sawa, Org. Lett. 2008, 10, 4251–4254;
g) C. Li, J. Wang, J. Org. Chem. 2007, 72, 7431–7434;
h) ref.[16a]
propargyl substitution, see: a) P. Li, Y. Zhang, L. Wang,
Chem. Eur. J. 2009, 15, 2045–2049; b) Z. Zhan, J. Yu,
H. Liu, Y. Cui, R. Yang, W. Yang, J. Li, J. Org. Chem.
2006, 71, 8298–8301; c) Z. Zhan, X. Cai, S. Wang, J.
Yu, H. Liu, Y. Cui, J. Org. Chem. 2007, 72, 9838–9841;
d) W. Ji, Y. Pan, S. Zhao, Z. Zhan, Synlett 2008, 3046–
3052.
[14] For recent reviews of the metal-catalyzed propargyl
substitution, see: a) N. Ljungdahl, N. Kann, Angew.
Chem. 2009, 121, 652–654; Angew. Chem. Int. Ed.
2009, 48, 642–644; b) R. J. Detz, H. Hiemstra, J. H.
Maarseveen, Eur. J. Org. Chem. 2009, 6263–6276.
[15] For recent selected examples of C-allenation reactions
of propargyl compounds, see: a) R. Sanz, D. Miguel, A.
Martinez, J. M. Alvarez-Gutierrez, F. Rodriguez, Org.
Lett. 2007, 9, 727–730; b) ref.[16b]
[16] The work of Bach and Yoshimatsu directed us to the
use of CH3NO2 as the solvent, which was considered a
good medium to stabilize the propargyl cation inter-
mediate. For the successful use of nitromethane in
propargyl substitution reactions, see: a) P. Rubenbauer,
E. Herdtweck, T. Strassner, T. Bach, Angew. Chem.
2008, 120, 10260–10263; Angew. Chem. Int. Ed. 2008,
47, 10106–10109; b) M. Yoshimatsu, T. Yamamoto, A.
Sawa, T. Kato, G. Tanabe, O. Muraoka, Org. Lett. 2009,
11, 2952–2955; c) M. Yoshimatsu, T. Otani, S. Matsuda,
T. Yamamoto, A. Sawa, Org. Lett. 2008, 10, 4251–4254.
[17] The experiments on capturing the three key intermedi-
À
[8] To the best of our knowledge, the N C bond formation
between 1H-indole-NH and alkyne-C is exclusively
achieved in the presence of base or ligand, and the
single metallic Lewis acid-catalyzed addition has not
been reported previously. For a recent example of
Cu(I)-catalyzed tandem synthesis of N-fused heterocy-
cles in the presence of strong base and ligand, see:
A. K. Verma, T. Kesharwani, J. Singh, V. Tandon, R. C.
Larock, Angew. Chem. 2009, 121, 1158–1163; Angew.
Chem. Int. Ed. 2009, 48, 1138–1143.
[9] Although the normal electrophilic site of 3-substituted
1H-indoles is known to be at C2, two recent examples
À
revealed that direct transition metal-catalyzed N C for-
ates are performed with propargyl alcohols
(0.5 mmol, 1.0 equiv.), 3-substituted indoles
1
2
mation between the free N-H of 3-subsituted 1H-in-
doles and multi-bonds could occur, see: a) ref.[8]
;
(0.55 mmol,
1.1 equiv.)
and
5 mol%
AgOTf
b) M. R. Luzung, C. A. Lewis, P. S. Baran, Angew.
Chem. 2009, 121, 7159–7163; Angew. Chem. Int. Ed.
2009, 48, 7025–7029.
(0.025 mmol) in toluene (2 mL), which are shown
below. In the course of forming 6, 7 and 8, certain
amounts of the corresponding final N-fused heterocy-
cles (3aa, 4ha and 5ja) were also furnished. Without
isolation and after being heated for an appropriate
time, these intermediates would be converted com-
pletely into corresponding N-fused heterocyclic prod-
ucts.
[10] For research on the resonance of alkynyl cation and al-
lenic cation, see: a) J. Andres, R. Cardenas, E. Silla, O.
Tapia, J. Am. Chem. Soc. 1988, 110, 666–674; b) G. A.
Olah, R. J. Spear, P. W. Westerman, J. Denis, J. Am.
Chem. Soc. 1974, 96, 5855–5859; c) H. G. Richey, J. C.
Philips, L. E. Rennick, J. Am. Chem. Soc. 1965, 87,
1381–1382.
[11] For recent reviews of Ag(I)-catalyzed synthesis of het-
erocycles and related mechanistic rationale, see: a) M.
Alvarez-Corral, M. Munoz-Dorado, I. Rodriguez-
Garcia, Chem. Rev. 2008, 108, 3174–3198; b) J. Weibel,
A. Blanc, P. Pale, Chem. Rev. 2008, 108, 3149–3173;
c) N. T. Patil, Y. Yamamoto, Chem. Rev. 2008, 108,
3395–3442; d) Y. Yamamoto, Chem. Rev. 2008, 108,
3199–3222; e) M. Naodovic, H. Yamamoto, Chem. Rev.
2008. 108. 3132–3148.
3222
ꢁ 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2010, 352, 3215 – 3222