Journal of the American Chemical Society
COMMUNICATION
Scheme 2. Proposed Catalytic Cycle
(2) Leading references on the arylation of C-O multiple bonds: (a)
Kuninobu, Y.; Nishina, Y.; Takeuchi, T.; Takai, K. Angew. Chem., Int. Ed.
2007, 46, 6518–6520. (b) Fukumoto, Y.; Sawada, K.; Hagihara, M.;
Chatani, N.; Murai, S. Angew. Chem., Int. Ed. 2002, 41, 2779–2781.
(3) Zhou, C.; Larock, R. C. J. Am. Chem. Soc. 2004, 126, 2302–2303.
(4) Leading references on the intramolecular olefination of C-N
double bonds: (a) Kuninobu, Y.; Kawata, A.; Takai, K. J. Am. Chem. Soc.
2005, 127, 13498–13499. (b) Fukutani, T.; Umeda, N.; Hirano, K;
Satoh, T.; Miura, M. Chem. Commun. 2009, 5141–5143.
(5) For examples of intermolecular alkylation of C-N double
bonds, see: (a) Qian, B.; Guo, S.; Shao, J.; Zhu, Q.; Yang, L.; Xia, C.;
Huang, H. J. Am. Chem. Soc. 2010, 132, 3650–3651. (b) Aydin, J.; Szabꢀo,
K. J. Org. Lett. 2008, 10, 2881–2884. (c) Aydin, J.; Conrad, C. S.; Szabꢀo,
K. J. Org. Lett. 2008, 10, 5175–7178.
(6) The importance of this compound class has led to intensive
development of transition metal catalyzed additions, including enantio-
selective catalytic additions, of aryl organometallic reagents to imines.
(a) For a review on transition-metal catalyzed additions of organoboron
reagents, see: Miyaura, N. Bull. Chem. Soc. Jpn. 2008, 81, 1535–1553. (b)
For a review on Rh-catalyzed additions, see: Fagnou, K; Lautens, M.
Chem. Rev. 2003, 103, 169–196.
(7) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147–1169.
(8) (a) Li, L.; Jiao, Y.; Brennessel, W. W.; Jones, W. D. Organome-
tallics 2010, 29, 4593–4605. (b) Li, L.; Brennessel, W. W.; Jones, W. D.
J. Am. Chem. Soc. 2008, 130, 12414–12419. (c) Davies, D. L.; Al-Duaij,
O.; Fawcett, J.; Giardiello, M.; Hilton, S. T.; Russell, D. R. Dalton Trans.
2003, 4132.
(9) There have been a few recent reports of using a halide abstractor
in combination with [Cp*RhCl2]2: (a) Patureau, F. W.; Glorius, F. J. Am.
Chem. Soc. 2010, 132, 9982–9983. (b) Schipper, D. J.; Hutchinson, M.;
Fagnou, J. J. Am. Chem. Soc. 2010, 132, 6910–6911. (c) Stuart, D. R.;
Bertrand-Laperle, M.; Burgess, K. M. N.; Fagnou, K. J. Am. Chem. Soc.
2008, 130, 16474–16475.
(10) For leading references, see: (a) Nishimura, T; Katoh, T.;
Takatsu, K.; Shintani, R.; Hayashi, T. J. Am. Chem. Soc. 2007, 129,
14158–14159. (b) Nishimura, T.; Katoh, T.; Hayashi, T. Angew. Chem.,
Int. Ed. 2007, 46, 4937–4939. (c) Zhao, P.; Incarvito, C. D; Hartwig, J. F.
J. Am. Chem. Soc. 2006, 128, 3124–3125. (d) Terao, Y.; Wakui, H.;
Nomoto, M.; Satoh, T.; Miura, M; Nomura, M. J. Org. Chem. 2003, 68,
5236–5243. (e) Nishimura, T.; Araki, H.; Maeda, Y.; Uemura, S. Org.
Lett. 2003, 5, 2997–2999. (f) Kondo, T.; Kodoi, K.; Nishinaga, E.;
Okada, T.; Morisaki, Y.; Watanabe, Y.; Mitsudo, T. J. Am. Chem. Soc.
1998, 120, 5587–5588.
this latter pathway is unlikely, given that only the electronically
deactivated ortho position is functionalized on the electron-
deficient 2-phenylpyridine. Furthermore, the observation that
the reaction is more efficient for electron-poor 2-arylpyridines
(see Scheme 1, 3b vs 3c) is inconsistent with an EAS pathway but
supports an electrophilic deprotonation mechanism.
In summary, [Cp*RhCl2]2/AgSbF6 catalyzes the addition of
2-arylpyridines to N-Boc- and N-sulfonyl-imines via C-H bond
functionalization to give branched amine products. Many com-
monly encountered functional groups, such as ketone, aldehyde,
ester, halide, trifluoromethyl, amide, and nitro groups, are com-
patible with the method. Mechanistic studies and the investigation
of alternative directing groups will be reported in due course.
’ ASSOCIATED CONTENT
S
Supporting Information. Complete experimental details
b
and spectral data for all compounds described. This material is
(11) Kan, T.; Fukuyama, T. Chem. Commun. 2004, 353–359.
(12) For recent reports and reviews of Friedel-Crafts alkylations
with imines, see: (a) Poulsen, T. B.; Jorgensen, K. A. Chem. Rev. 2008,
108, 2903–2915. (b) Shirakawa, S.; Berger, R.; Leighton, J. L. J. Am.
Chem. Soc. 2005, 127, 2858–2859. (c) Uraguchi, D.; Sorimachi, K.;
Terada, M. J. Am. Chem. Soc. 2004, 126, 11804–11805. (d) Gong, Y.;
Kato, K.; Kimoto, H. Bull. Chem. Soc. Jpn. 2002, 75, 2637–2645. (e)
Saaby, S.; Fang, X.; Gathergood, N.; Jorgensen, K. A. Angew. Chem., Int.
Ed. 2000, 39, 4114–4116. (f) Johannsen, M. Chem. Commun. 1999,
2233.
’ AUTHOR INFORMATION
Corresponding Author
rbergman@berkeley.edu; jonathan.ellman@yale.edu
’ ACKNOWLEDGMENT
This work was supported by the NIH grant GM069559 (to
J.A.E.) and by the Director, Office of Energy Research, Office of
Basic Energy Sciences, Chemical Sciences Division, U.S. Depart-
ment of Energy under contract DE-AC02-05CH11231 (to
R.G.B.). A.S.T. is grateful for an Eli Lilly Fellowship, and
M.E.T. thanks the Deutsche Forschungsgemeinschaft (DFG)
for a research fellowship (Ta 733/1-1).
’ REFERENCES
(1) For recent reviews on C-H functionalizations with alkenes and
alkynes, see: (a) Satoh, T.; Miura, M. Chem. Eur. J. 2010, 16, 11212–
11222. (b) Karimi, B.; Behzadnia, H.; Elhamifar, D.; Akhavan, P. F.;
Esfahani, F. K.; Zamani, A. Synthesis 2010, 9, 1399–1427. (c) Wang, X.;
Zhou, L.; Lu, W. Curr. Org. Chem. 2010, 14, 289–307. (d) Colby, D. A.;
Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624–655. (e) Chen,
X.; Engle, K. M.; Wang, D. H.; Yu, J. Q. Angew. Chem., Int. Ed. 2009, 48,
5094–5115.
1250
dx.doi.org/10.1021/ja109562x |J. Am. Chem. Soc. 2011, 133, 1248–1250