M. H. Chang, B. Y. Chung and Y. S. Cho, Synthesis, 2004,
1581; (d) S. K. De and R. A. Gibbs, Tetrahedron Lett., 2005, 46,
8345; (e) M. Yasuda, T. Saito, M. Ueba and A. Baba, Angew.
Chem., Int. Ed., 2004, 43, 1414; (f) T. Saito, Y. Nishimoto,
M. Yasuda and A. Baba, J. Org. Chem., 2006, 71, 8516.
6 (a) J. A. Cella, J. Org. Chem., 1982, 47, 2125; (b) M. Murakami,
T. Kato and T. Mukaiyama, Chem. Lett., 1987, 1167;
(c) T. Yokozawa, K. Furuhashi and H. Natsume, Tetrahedron
Lett., 1995, 36, 5243; (d) T. Ishikawa, T. Aikawa, Y. Mori and
S. Saito, Org. Lett., 2004, 6, 1369.
7 (a) W. R. Roush, in Comprehensive Organic Synthesis, ed. B. M. Trost,
Pergamon Press, Oxford, UK, 1991; (b) D. S. Matteson, in
Stereodirected Synthesis with Organoboranes, Springer, Berlin, 1995;
(c) Y. Bubnov, in Science of Synthesis: Houben–Weyl Methods of
Molecular Transformations, Organometallics, ed. D. E. Kaufmann and
D. S. Matteson, Georg Thieme Verlag KG, 2005, vol. 6, p. 945; (d) J.
W. J. Kennedy and D. G. Hall, in Boronic Acids, ed. D. G. Hall, Wiley-
VCH, Weinheim, 2005, vol. 6, p. 241.
8 (a) R. W. Hoffmann and W. Ladner, Tetrahedron Lett., 1979, 20,
4653; (b) R. W. Hoffmann, Angew. Chem., Int. Ed. Engl., 1982, 21,
555; (c) R. W. Hoffmann, Pure Appl. Chem., 1988, 60, 123;
(d) Y. Yamamoto, T. Komatsu and K. Maruyama, J. Am. Chem.
Soc., 1984, 106, 5031; (e) S. E. Denmark and N. G. Almstead, in
Modern Carbonyl Chemistry, ed. J. Otera, Wiley-VCH, Weinheim,
2000, vol. 10, p. 299; (f) S. R. Chemler and W. R. Roush, in
Modern Carbonyl Chemistry, ed. J. Otera, Wiley-VCH, Weinheim,
2000, vol. 11, p. 403.
9 For selected examples, see: (a) J. W. J. Kennedy and D. G. Hall,
J. Am. Chem. Soc., 2002, 124, 11586; (b) T. Ishiyama, T.-a. Ahiko
and N. Miyaura, J. Am. Chem. Soc., 2002, 124, 12414;
(c) R. Wada, K. Oisaki, M. Kanai and M. Shibasaki, J. Am.
Chem. Soc., 2004, 126, 8910; (d) R. Wada, T. Shibuguchi,
S. Makino, K. Oisaki, M. Kanai and M. Shibasaki, J. Am. Chem.
Soc., 2006, 128, 7687; (e) U. Schneider and S. Kobayashi, Angew.
Chem., Int. Ed., 2007, 46, 5909; (f) U. Schneider, M. Ueno and
S. Kobayashi, J. Am. Chem. Soc., 2008, 130, 13824; (g) T. J. Barker
and E. R. Jarvo, Org. Lett., 2009, 11, 1047; (h) A. Chakrabarti,
H. Konishi, M. Yamaguchi, U. Schneider and S. Kobayashi,
Angew. Chem., Int. Ed., 2010, 49, 1838; (i) Seminal organo-
catalytic activation: D. S. Barnett, P. N. Moquist and
S. E. Schaus, Angew. Chem., Int. Ed., 2009, 48, 8679, and
references cited herein.
Scheme 3 Proposed reaction mechanism.
transmetalation of borane 2b to generate the allylic indium(I)
species B, which reacts with A to give the desired cross-coupling
product 3. The substantially improved reactivity switching from
allylboronate 2a to allylborane 2b can be explained by: (1) the
Lewis acidity of the boron atom of borane 2b is much higher than
that of boronate 2a; thus, allylborane 2b would have a significantly
higher affinity toward the in situ formed methoxide to generate the
ate complex C, which might drive the equilibrium of the first step
to the right side, that is, the formation of A. (2) Ate complex C
might undergo faster transmetalation than the corresponding ate
complex D derived from 2a.17 However, at this stage, we cannot
rule out a nontransmetalative pathway, which would involve the
direct reaction of ate complex C with electrophile A.18
In conclusion, we have developed an efficient indium(I)-
catalyzed alkyl–allyl coupling reaction between ethers and an
allylborane, which is therefore clearly distinguished from our
earlier work with allylboronates.9e,9f,9h,11 In addition, this
transformation represents a rare example of (1) a main group
metal-catalyzed alkyl–allyl cross-coupling using boron-based
reagents, and (2) the use of an allylborane for CÀC bond
formation with non-carbonyl electrophiles.19 We believe that
these findings will significantly expand the utility of allylboranes in
various domains of organic synthesis. Further investigations
include mechanistic studies and the development of new
transformations by means of non-toxic boron reagents.
This work was partially supported by a Grant-in-Aid for
Science Research from JSPS, the Global COE Program, The
University of Tokyo, MEXT, Japan, ERATO (JST) and NEDO.
10 For an example of an in situ formed boron reagent for nucleophilic
substitution of alcohols, see: G. W. Kabalka, Z. Wu and Y. Ju,
Org. Lett., 2004, 6, 3929.
11 U. Schneider, H. T. Dao and S. Kobayashi, Org. Lett., 2010, 12, 2488.
12 Preparation and stoichiometric use of InOTf have been reported:
(a) C. L. B. Macdonald, A. M. Corrente, C. G. Andrews, A. Taylor
and B. D. Ellis, Chem. Commun., 2004, 250; (b) C. G. Andrews and
C. L. B. Macdonald, Angew. Chem., Int. Ed., 2005, 44, 7453;
(c) C. G. Andrews and C. L. B. Macdonald, J. Organomet. Chem.,
2005, 690, 5090; (d) B. F. T. Cooper and C. L. B. Macdonald, New
J. Chem., 2010, 34, 1551.
13 The reactions did not occur at all in the absence of InOTf.
14 Combination of InOTf (10 mol%) with 10 mol% of In(OTf)3,
InCl3, or GaCl3 provided messy reaction mixtures.
15 Conditions: catalyst (5 mol%), DCM (0.5 M), rt, 3 h; catalysts and
corresponding yields: InOTf (85%), In(OTf)3 (45%), Ga(OTf)3
(41%), Hf(OTf)4 (35%), AgOTf (26%), Cu(OTf)2 (26%), Al(OTf)3
(25%), Fe(OTf)2 (12%), Zn(OTf)2 (NR), Mg(OTf)2 (NR),
TMSOTf (43%), HOTf (12%); conditions for TMSOTf and
HOTf: catalyst (10 mol%), DCM (0.5 M), À78 1C to rt, 3 h.
16 The assumed intermediate in the reaction with 1u, adamantyl
Notes and references
´
1 For a recent review, see: D. J. Cardenas, Angew. Chem., Int. Ed.,
2003, 42, 384.
2 (a) A. Hosomi, T. Imai, M. Endo and H. Sakurai, J. Organomet.
Chem., 1985, 285, 95; (b) B. C. Ranu, S. Banerjee and L. Adak,
Tetrahedron Lett., 2007, 48, 7374.
3 J. S. Yadav, B. V. S. Reddy, K. V. Rao, K. S. Raj, P. R. Rao,
A. R. Prasad and D. Gunasekar, Tetrahedron Lett., 2004, 45, 6505.
4 T. Saito, Y. Nishimoto, M. Yasuda and A. Baba, J. Org. Chem.,
2007, 72, 8588.
triflate, is known as a highly reactive compound, see: A. Garcı
Martınez, E. Teso Vilar, S. de la Moya Cerero, J. Osıo Barcina and
P. C. Gomez, J. Org. Chem., 1999, 64, 5611.
´
a
´
´
´
17 (a) N. Miyaura and A. Suzuki, Chem. Rev., 1995, 95, 2457;
(b) J. A. Soderquist and J. C. Justo de Pomar, Tetrahedron Lett.,
2000, 41, 3537.
5 With only a few exceptions, allylation of allylic and benzylic
alcohols with allylsilanes is typically limited to secondary and
tertiary alcohols, and displays low functional group tolerance,
see: (a) G. Kaur, M. Kaushik and S. Trehan, Tetrahedron Lett.,
1997, 38, 2521; (b) M. Rubin and V. Gevorgyan, Org. Lett., 2001,
3, 2705; (c) S. H. Kim, C. Shin, A. N. Pae, H. Y. Koh,
18 For an example of a boron–ate complex that reacts with carbenium
ion centers, see: R. Hunter and G. D. Tomlinson, Tetrahedron
Lett., 1989, 30, 2013.
19 For an example of using allylborane 2b in synthesis, see: G. Y. Fang,
O. A. Wallner, N. Di Blasio, X. Ginesta, J. N. Harvey and
V. K. Aggarwal, J. Am. Chem. Soc., 2007, 129, 14632.
c
694 Chem. Commun., 2011, 47, 692–694
This journal is The Royal Society of Chemistry 2011