Please do not adjust margins
Organic & Biomolecular Chemistry
Page 6 of 6
ARTICLE
Journal Name
Thanks are given to the Ministry of Science and Technology in
Taiwan (MOST) for financial support (Grant no. MOST 108-
2113-M-009-021), to the Centre for Advanced Instrumentation
for mass spectroscopy analyses and the National Chiao Tung
University for NMR spectroscopy services.
Tetrahedron, 2010, 51, 46-48.
DOI: 10.1039/D0OB00252F
21 S. Chandrasekhar, G. Chandrasekhar, B. N. Babu, K. Vijeender,
K. V. Reddy, Tetrahedron Lett. 2004, 45, 5497-5499.
22 M. Giordano, A. Iadonisi, Tetrahedron Lett. 2013, 54, 1550–
1552.
23 Due to the transilylation side reaction in Scheme 1 and similar
Rf values, we initially assumed that the side product of the
reactions in entries 2 and 3 was the transilylation product 4.
After isolation for NMR characterization, the side product was
(Nap)2O. Noteworthy, the reductive etherification of carbonyl
compounds is known to occur at RT (see ref 11 and 12d).
24 It should be noted that in previous PMHS reductive
etherification of aldehyde (ref 20), the acid catalyst was iodine
and the reaction was performed at RT.
25 P. Desai, K. Schildknegt, K. A. Agrios, C. Mossman, G. L.
Milligan, J. Aubé, J. Am. Chem. Soc. 2000, 122, 7226-7232.
(basic property of azide)
26 H.-L. Lee and J. Aubé, Tetrahedron, 2007, 63, 9007-9015.
(basic property of azide)
27 A. Murali, M. Puppala, B. Varghese, S. Baskaran, Eur. J. Org.
Chem. 2011, 5297–5302. (basic property of azide)
28 It has reported that isopropyl 4,6-O-benzyidlene-α-
galactoside, which has a similar structure to 10k, could be
alkylated at C3 position in Ref 7. The difference may be
attributed to their different anomeric configurations.
29 C. C. Lin, T. S. Hsu, K. C. Lu, I. T. Huang, J. Chin. Chem. Soc.
2000, 47, 921-928.
30 J. Kalikanda, Z. Li, J. Org. Chem. 2011, 76, 5207-5218.
31 K. K. T. Mong, K. S. Shiau, Y. H. Lin, K. C. Cheng, C. H. Lin, Org.
Biomol. Chem. 2015, 13, 11550-11560.
32 K. Daragics, P. Fugedi, Tetrahedron Lett. 2009, 50, 2914-2916.
33 M. P. DeNinno, J. B. Etienne, K. C. Duplantier, Tetrahedron
Lett. 1995, 36, 669-672.
Notes and references
‡
Supporting information for general PMHS reductive
etherification and one-pot protecting group manipulation
procedure, NMR spectroscopic data of 24, 79, 10a10k,
12a12k, 17, 18, 21, and 24 are available.
1
2
A. Demchenko, Org. Biomol. Chem. 2019, 17, 4934-4950.
S. Oscarson, Protective group strategies, in The organic
chemistry of sugars, ed. D. E. Levi and P. Fugedi, CRC, Taylor &
Francis, Boca Raton - London - New York, 2006, pp. 53–88.
S. M. Polyakova, A. V. Nizovtsev, R. A. Kuznetskiy, and N. V.
Bovin, Russ. Chem. Bull. 2015, 974–989.
K. Ágoston, H. Streicher and P. Fügedi, Tetrahedron:
Asymmetry, 2016, 27, 707–728.
S. S. Kulkarni, C. C. Wang, N. M. Sabbavarapu, A. R. Podilapu,
P. H. Liao, S. C. Hung, Chem. Rev. 2018, 118, 8025-8104 and
references cited therein.
3
4
5
6
7
8
9
C. C. Wang, J. C. Lee, S. Y. Luo, S. S. Kulkarni, Y. W. Huang, C.
C. Lee, K. L. Chang, S. C. Hung, Nature, 2007, 446, 896-899.
C. C. Wang, M. M. L. Zulueta, S.-C. Hung, Chimia, 2011, 65, 54-
58.
A. Francais, D. Urban, J. M. Beau, Angew. Chem. Int. Ed., 2007,
46, 8662-8665.
Z. Huo, D. Ding, Y. Zhang, N. Lei, G. Gu, J. Gao, Z. Guo, and F.
Cai, J. Carbohydr. Chem., 2018, 37, 327-346 and reference
cited therein.
34 Y. Yoneda, H. Hettegger, T. Rosenau, T. Kawada,
ChemistrySelect. 2016, 1, 5715-5720.
10 G. Despras, D. Urban, B. Vauzeillesa, J.-M. Beau, Chem.
Commun., 2014, 50, 1067-1069.
11 M. P. Doyle, D. J. DeBruyn, D. A. Kooistra, J. Am. Chem. Soc.
1972, 94, 3659-3661.
12 a) A. Pelosi, D. Lanari, A. Temperini, M. Curini, O. Rosati, Adv.
Synth. Catal. 2019, 361, 4527-4539. b) C. Zhao, C. A. Sojdak,
W. Myint, D. Seidel, J. Am. Chem. Soc., 2017, 139,
10224−10227. c) J. S. Ruso, N. Rajendiran, N. S. Kumaran, G.
Manickam, J. S. Chem. Soc., 2016, 20, 330-335. d) B. A. Gellert,
N. Kahlcke, M. Feurer, S. Roth, Chem. Eur. J., 2011, 17, 12203-
12209. e) S. Hatakeyama, H. Mori, K. Kitano, H. Yamada, M.
Nishizawa, Tetrahedron Lett. 1994, 35, 4367-4370. f) J.-I. Kato,
N. Iwasawa, T. Mukaiyama, Chem. Lett., 1985, 14, 743-746.
13 L. Huang, X. Huang, Chem. Eur. J., 2007, 13, 529-540.
14 A. A. Joseph, V. P. Verma, X. Y. Liu, C. H. Wu, V. M. D
hurandhare, C. C. Wang, Eur. J. Org. Chem., 2012, 744-753.
15 The identity of 3 could be inferred from the naphthylidene
proton signal at ca. 5.75 ppm and detection of its molecular
ion by the mass spectrometry. 3 was also prepared separately
1
and the corresponding H NMR spectrum was acquired for
comparison (See NMR spectrum of 3 in SI).
16 In previous protocol, the basic HMDS by-products were
removed by purging with N2, but we found that the workup
procedure (washing NH4Cl(aq)) was more reliable for removal
of the by-products, which if present might affect the acid-
catalyzed etherification.
17 Protocol using -86 oC temperature for the etherification
reaction: C. C. Wang, S. S. Kulkarni, J.-C. Lee, S.-Y. Luo, S.-C.
Hung, Nature Protocols, 2008, 3, 97-112.
18 R. Enugala, L, C. R. Carvalho, M. Mauel, B. Marques, Synlett,
2010, 2711-2716.
19 N. J. Lawreance, M. D. Drew, S. M. Bushell, J. Chem. Soc. Perkin
Trans. 1, 1999, 3381-3391.
6 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins