Notes and references
1 S. P. Thomas and V. K. Aggarwal, Angew. Chem., 2009, 121, 1928
(Angew. Chem., Int. Ed., 2009, 48, 1896).
2 (a) A. Pelter, K. Smith and H. C. Brown, Borane Reagents,
Academic Press, New York, 1988; (b) Y. Bubnov, in Science of
Synthesis, ed. D. E. Kaufmann and D. S. Matteson, Thieme,
Stuttgart, 2004, vol. 6, pp. 945–1072.
3 A. Z. Gonzalez, J. G. Roman, E. Gonzalez, J. Martinez,
J. R. Medina, K. Matos and J. A. Soderquist, J. Am. Chem.
Soc., 2008, 130, 9218.
4 (a) K. Burgess and M. J. Ohlmeyer, Chem. Rev., 1991, 91, 1179;
(b) C. M. Crudden and D. Edwards, Eur. J. Org. Chem., 2003,
4695; (c) I. Beletskaya and A. Pelter, Tetrahedron, 1997, 53, 4957;
(d) C. M. Crudden, B. W. Glasspoole and C. J. Lata, Chem.
Commun., 2009, 6704.
Scheme 1 (i) See Table 2 entry 4 (1.0 g scale); (ii) Pd(OAc)2
(10 mol%), dppf (12 mol%), PhB(OH)2 (1.5 equiv.), K3PO4 (3.0 equiv.),
THF, 80 1C, 48 h; (iii) NaOH, H2O2, 23 1C, 2 h; (iv) DMP (1.7 equiv.)
CH2Cl2, 23 1C, 20 min; (v) KHF2, H2O : MeOH, 23 1C, 30 min; (vi)
Pd(OAc)2 (5 mol%), RuPhos (10 mol%), 4-bromoanisole (1.0 equiv.),
K2CO3 (3.0 equiv.), toluene : H2O (10 : 1), 80 1C, 24 h.
5 M. Sato, N. Miyaura and A. Suzuki, Tetrahedron Lett., 1990, 31,
231.
6 (a) K. Burgess and M. J. Ohlmeyer, J. Org. Chem., 1988, 53,
5178; (b) K. Burgess, W. A. van der Donk and M. J. Ohlmeyer,
Tetrahedron: Asymmetry, 1991, 2, 613.
performing a series of fundamental derivatizations relying on
challenging orthogonal functionalization through successive
Suzuki cross-coupling reactions (Scheme 1).18
Asymmetric hydroboration of 1d was performed on a 1.0 g
scale delivering 4d exclusively with excellent yield and good
enantioselectivity (90% yield, 79% ee). Using a standard
protocol, selective Suzuki cross-coupling between the electro-
philic site of 2d and phenylboronic acid was successfully
achieved, leaving the boronic ester untouched. No traces of
cross-product could be detected and the coupling product 4d
was obtained in 65% yield without any extensive optimiza-
tions of the reaction conditions. From this pivotal intermediate,
successive oxidations, first to the corresponding alcohol 5d and
next to the potentially stereo-labile a-chiral aldehyde 6d, were
performed without noticeable epimerization of the stereogenic
center (93% yield over 2 steps, 79% ee).19 The relatively inert
boronate ester 4d was converted to the corresponding potassium
trifluoroborate salt 7d in quantitative yield.20 A second Suzuki
cross-coupling was conducted exploiting conditions developed
by Molander21 and coworkers. Using 5 mol% of Pd(OAc)2
and 10 mol% of Buchwald’s RuPhos ligand,22 4-bromoanisole
was coupled with 7d under aqueous conditions. The expected
chiral polyaromatic product 8d was obtained in 70% yield
without erosion of the enantiomeric purity, demonstrating
that competing reversible b-hydride elimination does not
occur under these conditions.23
7 T. Hayashi, Y. Matsumoto and Y. Ito, Tetrahedron: Asymmetry,
1991, 2, 601.
8 (a) T. Hayashi, in Comprehensive Asymmetric Catalysis, ed.
E. N. Jacobsen, A. Pfaltz and H. Yamamoto, Springer, Berlin,
1999, vol. 1, pp. 351–366; (b) J. M. Brown, in Modern Rhodium-
Catalyzed Organic reactions, Wiley-VCH, Weinheim, 2005.
9 S. A. Westcott, T. B. Marder and R. T. Baker, Organometallics,
1993, 12, 975.
10 C. M. Crudden, Y. B. Hleba and A. C. Chen, J. Am. Chem. Soc.,
2004, 126, 9200.
11 Y. Yamamoto, R. Fujikawa, T. Umemoto and N. Miyaura,
Tetrahedron, 2004, 60, 10695.
12 (a) D. Noh, H. Chea, J. Ju and J. Yun, Angew. Chem., 2009, 121,
6178 (Angew. Chem., Int. Ed., 2009, 48, 6062); (b) C. J. Lata and
C. M. Crudden, J. Am. Chem. Soc., 2010, 132, 131.
13 (a) S. McIntyre, E. Hormann, F. Menges, S. P. Smidt and
¨
A. Pfaltz, Adv. Synth. Catal., 2005, 347, 282; (b) M. Dieguez,
J. Mazuela, O. Pamies, J. J. Verendel and P. G. Andersson, J. Am.
Chem. Soc., 2008, 130, 7208; (c) J. Mazuela, J. Verendel, M. Coll,
B. Schaffner, A. Borner, P. G. Andersson, O. Pamies and
¨
¨
M. Dieguez, J. Am. Chem. Soc., 2009, 131, 12344.
14 A. C. Chen, L. Ren and C. M. Crudden, J. Org. Chem., 1999, 64,
9704.
15 K. Fagnou and M. Lautens, Angew. Chem., 2002, 114, 26 (Angew.
Chem., Int. Ed., 2002, 41, 26).
16 D. A. Evans, G. C. Fu and B. A. Anderson, J. Am. Chem. Soc.,
1992, 114, 6679.
17 The formation of p-allyl iridium intermediates can be ruled out
becauseit would imply the formation of coordinatively over-
saturated iridium complexes. An achiral ligand gives the same
isotopic distribution.
18 (a) M. Tobisu and N. Chatani, Angew. Chem., 2009, 121, 3617
(Angew. Chem., Int. Ed., 2009, 48, 3565); (b) N. Iwadate and
M. Suginome, J. Am. Chem. Soc., 2010, 132, 2548.
19 C. Botuha, M. Haddad and M. Larcheveque, Tetrahedron:
Asymmetry, 1998, 9, 1929.
20 (a) S. Darses and J.-P. Genet, Eur. J. Org. Chem., 2003, 4313;
(b) V. Bagutski, A. Ros and V. K. Aggarwal, Tetrahedron, 2009,
65, 9956.
In conclusion, we have developed an efficient protocol for the
catalytic asymmetric hydroboration of terminal olefins. High
catalytic activity, perfect regioselectivity and enantioselectivities
up to 92% were obtained using (phosphinooxazoline)–iridium
catalysts. The applicability of this method was further high-
lighted by orthogonal functionalization through successive
Suzuki cross-coupling reactions.
This work was supported by the State Secretariat for Educa-
tion and Research. Solvias is acknowledged for the gift of
ligand L2 and Johnson Matthey for the loan of iridium
21 G. A. Molander and L. Jean-Ge
´
5446.
22 R. Martı
rard, J. Org. Chem., 2009, 74,
´
n and S. L. Buchwald, Acc. Chem. Res., 2008, 41,
precursors. Professor E.-P. Kundig is warmly thanked for
¨
giving us access to his analytical facilities. L. Mantilli, S. Torche
and D. Grassi are acknowledged for practical assistance.
1461.
23 Y. Iwai, K. M. Gligorich and M. S. Sigman, Angew. Chem., 2008,
120, 3263 (Angew. Chem., Int. Ed., 2008, 47, 3219).
ꢀc
This journal is The Royal Society of Chemistry 2011
300 | Chem. Commun., 2011, 47, 298–300