Table 4 Rearrangement of 6 under optimized conditions
yield (over two steps) in 52% ee. Current efforts are geared
toward optimizing the efficiency of this asymmetric process
and developing a better understanding of its mechanism.
Support has been provided by the University of Oregon. This
material is based upon work supported by the National Science
Foundation under Grant No. DGE-0742540 (A.C.G.).
Entry
Precursor
Nu
Yield %a
7 : 8b
Notes and references
1
2
3
6a
6b
6c
63
73
73
>95 : 5
>95 : 5
>95 : 5
1 For examples, see: G. Bringmann and D. Menche, Acc. Chem.
Res., 2001, 34, 615–624.
2 For recent examples, see: (a) K. Takaishi, M. Kawamoto and
K. Tsubaki, Org. Lett., 2010, 12, 1832–1835; (b) Y. Ueno,
S. Komatsuzaki, K. Takasu, S. Kawai, Y. Kitamura and
Y. Kitade, Eur. J. Org. Chem., 2009, 4763–4769.
3 For an overview of biaryl phosphine, BINAP, and BINOL ligands
in catalysis applications, see: (a) D. S. Surry and S. L. Buchwald,
Angew. Chem., Int. Ed., 2008, 47, 6338–6361; (b) M. Berthod,
G. Mignani, G. Woodward and M. Lemaire, Chem. Rev., 2005,
105, 1801–1836; (c) J. M. Brunel, Chem. Rev., 2005, 105, 857–897.
4 For an overview, see: Modern Arylation Methods, ed.
L. Ackermann, Wiley-VCH, Weinheim, Germany, 2009.
5 For an overview, see: (a) D. Alberico, M. E. Scott and M. Lautens,
Chem. Rev., 2007, 107, 174–238; (b) G. P. McGlacken and
L. M. Bateman, Chem. Soc. Rev., 2009, 38, 2447–2464.
6 For an overview, see: (a) M. C. Kozlowski, B. J. Morgan and
E. C. Linton, Chem. Soc. Rev., 2009, 38, 3193–3207;
(b) J. A. Ashenhurst, Chem. Soc. Rev., 2010, 39, 540–548.
7 For recent successful examples, see: (a) M. G. Organ, S. Calimsiz,
M. Sayah, K. H. Hoi and A. J. Lough, Angew. Chem., Int. Ed., 2009,
48, 2383–2387; (b) L. Ackermann, H. K. Potukuchi, A. Althammer,
R. Born and P. Mayer, Org. Lett., 2010, 12, 1004–1007.
4
6d
76
>95 : 5
a
b
Isolated yield, average of two runs. Determined by H NMR.
1
undesired regioisomer 8 is not observed under our reaction
conditions. Noteworthy is the synthesis of 7d, which is a tetra-
ortho-substituted biaryl containing three ortho-isopropyl
substituents. To the best of our knowledge, it is the most sterically
encumbered biaryl naphthalene that has been synthesized to date.
We have structurally characterized 7d via single crystal X-ray
diffraction, thus unambiguously establishing its identity.
8 For pioneering work in the synthesis of tetra-ortho-substituted
biaryls via cross-coupling, see: (a) S. Miyano, S. Okada, T. Suzuki,
S. Handa and H. Hashimoto, Bull. Chem. Soc. Jpn., 1986, 59,
2044–2046; (b) C. Dai and G. C. Fu, J. Am. Chem. Soc., 2001, 123,
2719–2724; (c) A. F. Littke, L. Schwarz and G. C. Fu, J. Am.
Chem. Soc., 2002, 124, 6343–6348; (d) J. Yin, M. P. Rainka,
X. X. Zhang and S. L. Buchwald, J. Am. Chem. Soc., 2002, 124,
1162–1163; (e) J. E. Milne and S. L. Buchwald, J. Am. Chem. Soc.,
2004, 126, 13028–13032.
In order to improve the utility of our synthetic method, we
attempted the rearrangement without isolating the cyclopropyl
carbinol intermediate (Compound B in Scheme 1). When 1 was
treated with organolithium reagents followed by catalytic ring
expansion rearrangement, we observed the formation of the
desired biaryl naphthalenes 9 in up to 65% yield over two steps
(Table 5). The undesired tri-ortho-substituted biaryl was not
observed under these conditions.
9 For leading references, see: (a) J. R. Perkins and R. G. Carter,
J. Am. Chem. Soc., 2008, 130, 3290–3291; (b) M. Hapke, A. Gutnov,
N. Weding, A. Spannenberg, C. Fischer, C. Benkhauser-Schunk and
¨
B. Heller, Eur. J. Org. Chem., 2010, 509–514.
10 For leading references, see: (a) K. Tanaka, Chem.–Asian J., 2009,
4, 508–518; (b) G. Nishida, K. Noguchi, M. Hirano and
K. Tanaka, Angew. Chem., Int. Ed., 2007, 46, 3951–3954.
11 A. C. Glass, B. B. Morris, L. N. Zakharov and S.-Y. Liu, Org.
Lett., 2008, 10, 4855–4857.
12 For a comprehensive review on the synthesis of substituted
naphthalenes, see: C. B. de Koning, A. L. Rousseau and W. A. L.
van Otterlo, Tetrahedron, 2003, 59, 7–36.
13 For leading referencesof biaryl naphthalene synthesis using
rearrangement-based methods, see: (a) Y. Nishii, T. Yoshida,
H. Asano, K. Wakasugi, J. Morita, Y. Aso, E. Yoshida,
J. Motoyoshiya, H. Aoyama and Y. Tanabe, J. Org. Chem.,
2005, 70, 2667–2678; (b) G. S. Viswanathan, M. Wang and
C.-J. Li, Angew. Chem., Int. Ed., 2002, 41, 2138–2141;
(c) T. Shibata, Y. Ueno and K. Kanda, Synlett, 2006, 411–414;
(d) T. Hamura, T. Suzuki, T. Matsumoto and K. Suzuki, Angew.
Chem., Int. Ed., 2006, 45, 6294–6296; (e) Z. B. Zhu, Y. Wei and
M. Shi, Chem.–Eur. J., 2009, 15, 7543–7548; (f) A. Padwa,
U. Chiacchio, D. J. Fairfax, J. M. Kassir, A. Litrico,
M. A. Semones and S. L. Xu, J. Org. Chem., 1993, 58,
6429–6437. To the best of our knowledge, there were no examples
of tetra-ortho-substituted biaryl naphthalenes in these reports.
14 M. Hatano, T. Miyamoto and K. Ishihara, Curr. Org. Chem.,
2007, 11, 127–157.
We have initiated preliminary studies toward an asymmetric
version of this process. To this end, we successfully isolated
optically pure 1 via semi-preparatory chiral HPLC. Treatment of
optically pure 1 with 2-methoxynaphthyllithium and subsequent
catalytic rearrangement with Eu(OTf)3 furnished the desired
tetra-ortho-substituted biaryl naphthalene 3c in 54% isolated
Table 5 Biaryl naphthalene synthesis without isolation of intermediates
Entry
1
Li–Nu
Product
Yield %a
9a
9b
61
65
15 For example, the enthalpy of the addition of MeMgBr to di-t-butyl
ketone has been determined to be ꢁ150 kJ molꢁ1, see: T. Holm, Acta
Chem. Scand., Ser. B, 1976, 30, 985–990.
2
a
16 A. Bondi, J. Phys. Chem., 1964, 68, 441–451.
17 See Supporting Information for details.
Isolated yield, average of two runs.
c
288 Chem. Commun., 2011, 47, 286–288
This journal is The Royal Society of Chemistry 2011