ChemComm
Communication
copolymer PS-co-PDVSiOMA-g-(PE-OH)2 13 (Mw,GPC-LS = 218 ꢁ
103, PDIGPC-LS = 1.35) (see ESI,† Fig. S5). High hydroboration
efficiency was indicated by the quantitative disappearance of
the signal at 5.7–6.2 ppm in 1H NMR spectra for vinyl protons.
The PS backbone is identifiable in NMR spectra (toluene-d8,
25 1C) and the PE fingerprint is much more evident by increas-
ing the temperature up to 80 1C (see ESI,† Fig. S6).
In conclusion, a novel strategy using the in situ synthesized
B-thexyl-silaboracyclic moieties with two silicon-connected initiating
and one blocked sites for polyhomologation was successfully
developed. This general strategy opens a new horizon for the
synthesis of PE-based complex macromolecular architectures.
Only a few examples are given in this communication, i.e. a 4-arm
polyethylene star, three PS-PE2 3-miktoarm stars and a PE-branched
double graft copolymer. Combination of this general strategy with
other living and living/controlled polymerization techniques will
lead to novel architectures such as multi-arm stars (8, 12, 16-arm),
H-shaped, molecular brush copolymers, etc.
Fig. 2 1H NMR spectra of (a) PS-MDVSi (8a) (chloroform-d, 25 1C); (b) PS-
Silaboracycle (9a) (chloroform-d, 25 1C); (c) PS-PE2 (10a) (toluene-d8,
80 1C).
Notes and references
1 (a) P. Galli and G. Vecellio, J. Polym. Sci., Part A: Polym. Chem., 2004,
42, 396–415; (b) D. B. Malpass, Introduction to Industrial Polyethylene:
Properties, Catalysts, and Processes, John Wiley and Sons Ltd, 2010.
2 P. S. Chum and K. W. Swogger, Prog. Polym. Sci., 2008, 33, 797–819.
3 (a) L. Leibler, Prog. Polym. Sci., 2005, 30, 898–914; (b) C. W. Macosko,
H. K. Jeon and T. R. Hoye, Prog. Polym. Sci., 2005, 30, 939–947;
(c) P. J. Phillips, Polym. Cryst. Rep. Prog. Phys., 1990, 53, 549–604.
4 (a) J. Luo and K. J. Shea, Acc. Chem. Res., 2010, 43, 1420–1433; (b) K. J.
Shea, J. W. Walker, H. Zhu, M. M. Paz and J. Greaves, J. Am. Chem. Soc.,
1997, 119, 9049–9050; (c) K. J. Shea, Chem. – Eur. J., 2000, 6, 1113–1119.
5 (a) C. Yuan, H. Lu, Q. Li, S. Yang, Q. Zhao, J. Huang, L. Wei and
Z. Ma, J. Polym. Sci., Part A: Polym. Chem., 2012, 50, 2398–2405;
(b) Q.-Z. Li, G.-Y. Zhang, J.-Z. Chen, Q.-L. Zhao, H.-C. Lu, J. Huang,
L.-H. Wei, F. D’Agosto, C. Boission and Z. Ma, J. Polym. Sci., Part A:
Polym. Chem., 2011, 49, 511–517.
6 (a) H. Lu, Y. Xue, Q. Zhao, J. Huang, S. Xu, S. Cao and Z. Ma, J. Polym.
Sci., Part A: Polym. Chem., 2012, 50, 3641–3647; (b) Y. Xue, H. Lu,
Q. Zhao, J. Huang, S. Xu, S. Cao and Z. Ma, Polym. Chem., 2013, 4,
307–312; (c) J. Chen, K. Cui, S. Zhang, P. Xie, Q. Zhao, J. Huang,
L. Shi, G. Li and Z. Ma, Macromol. Rapid Commun., 2009, 30,
532–538; (d) J. Li, Q.-L. Zhao, J.-Z. Chen, L. Li, J. Huang, Z. Ma
and Y.-W. Zhong, Polym. Chem., 2010, 1, 164–167.
7 X. Wang, J. Gao, Q. Zhao, J. Huang, G. Mao, W. Wu, Y. Ning and
Z. Ma, J. Polym. Sci., Part A: Polym. Chem., 2013, 51, 2892–2899.
8 H. Zhang, Y. Gnanou and N. Hadjichristidis, Polym. Chem., 2014, 5,
6431–6434.
9 (a) K. J. Shea, S. Y. Lee and B. B. Busch, J. Org. Chem., 1998, 63,
5746–5747; (b) K. J. Shea, B. B. Busch and M. M. Paz, Angew. Chem.,
Int. Ed., 1998, 37, 1391–1393.
10 (a) C. E. Wagner and K. J. Shea, Org. Lett., 2001, 3, 3063–3066;
(b) C. E. Wagner, J.-S. Kim and K. J. Shea, J. Am. Chem. Soc., 2003,
125, 12179–12195.
Scheme 4 Synthesis of PE-branched double graft copolymer by combi-
nation of ATRP and polyhomologation.
10c: Mw,GPC-LS = 423 ꢁ 103, PDIGPC-LS = 1.35) (Fig. 1 and Fig. S3
and S4, ESI†). Also, the fingerprints of the PS and PE blocks
1
were found in the H NMR spectrum (Fig. 2c).
A ‘‘grafting from’’ strategy shown in Scheme 4 was developed
to synthesize a double graft copolymer. First, copolymerization
of styrene with 2-((methyldivinylsilyl)oxy)ethyl methacrylate
(DVSiOMA, 11) (for preparation see ESI,† Scheme S6) by ATRP
initiated by ethyl 2-bromoisobutyrate (EBiB) with the CuBr/
11 (a) X.-Z. Zhou and K. J. Shea, Macromolecules, 2001, 34, 3111–3114;
(b) K. J. Shea, C. L. Staiger and S. Y. Lee, Macromolecules, 1999, 32,
3157–3158.
PMDETA catalytic system led to PS-co-PDVSiOMA 12. Then, the 12 (a) H. Zhang, N. Alkayal, Y. Gnanou and N. Hadjichristidis, Chem.
Commun., 2013, 49, 8952–8954; (b) H. Zhang, N. Alkayal, Y. Gnanou
and N. Hadjichristidis, Macromol. Rapid Commun., 2014, 35, 378–390.
13 (a) J. A. Soderquist and A. Hassner, J. Org. Chem., 1983, 48, 1801–1810;
pendant divinylsilyl groups were transformed to B-thexyl-
silaboracycles by hydroboration with thexylborane, followed by
polyhomologation. As an example, PS38-co-PDVSiOMA3 (PDIGPC
1.31) was synthesized (feed ratio 50/4.5).
Hydroboration of PS38-co-PDVSiOMA3/polyhomologation by
the resultant macroinitiator leads to PE-branched double graft
=
(b) J. A. Soderquist, F.-Y. Shiau and R. A. Lemesh, J. Org. Chem., 1984,
49, 2565–2569; (c) M. F. Hawthorne, J. Am. Chem. Soc., 1961, 83,
2541–2544; (d) H. C. Brown and E. Negishi, J. Am. Chem. Soc., 1972,
94, 3567–3572; (e) E. Negishi and H. C. Brown, Synthesis, 1974, 77–89;
( f ) H. C. Brown and A. K. Mandal, J. Org. Chem., 1992, 57, 4970–4976.
This journal is ©The Royal Society of Chemistry 2015
Chem. Commun.