Notes and references
1 (a) N. Martın, L. Sanchez, B. Illescas and I. Perez, Chem. Rev.,
1998, 98, 2527; (b) M. R. Bryce, Adv. Mater., 1999, 11, 11;
(c) J. L. Segura and N. Martın, Angew. Chem., Int. Ed., 2001, 40,
1372; (d) J. O. Jeppesen, M. Nielsen and J. Becher, Chem. Rev.,
2004, 104, 5115; (e) N. Martın, L. Sanchez, M. A. Herranz,
B. Illescas and D. Guldi, Acc. Chem. Res., 2007, 40, 1015;
(f) W. Dichtel, O. Miljanic, W. Zhang, J. Spruell, K. Patel,
I. Aprahamian, J. Health and J. Stoddart, Acc. Chem. Res.,
2008, 41, 1750; (g) J. Stoddart, Chem. Soc. Rev., 2009, 38, 1802;
(h) D. Canevet, M. Salle, G. Zhang, D. Zhang and D. Zhu, Chem.
Commun., 2009, 2245, and further references therein.
2 (a) D. F. Perepichka, M. R. Bryce, C. Pearson, M. C. Petty, E. J. L.
McInnes and J. P. Zhao, Angew. Chem., Int. Ed., 2003, 42, 4636;
(b) E. Tsiperman, J. Y. Becker, V. Khodorkovsky, A. Shames and
L. Shapiro, Angew. Chem., Int. Ed., 2005, 44, 4015; (c) J. Baffreau,
F. Dumur and P. Hudhomme, Org. Lett., 2006, 8, 1307;
(d) A. Molina-Ontoria, G. Fernandez, M. Wielopolski,
C. Atienza, L. Sanchez, A. Gouloumis, T. Clark, N. Martin and
D. Guldi, J. Am. Chem. Soc., 2009, 131, 12218.
3 (a) J. Becher, T. Brimert, J. O. Jeppesen, J. Z. Pedersen,
R. Zubarev, T. Bjørnholm, N. Reitzel, T. R. Jensen, K. Kjaer
and E. Levillain, Angew. Chem., Int. Ed., 2001, 40, 2497;
(b) S. Leroy-Lhez, J. Baffreau, L. Perrin, E. Levillain, M. Allain,
M. Blesa and P. Hudhomme, J. Org. Chem., 2005, 70, 6313;
(c) C. Jia, S. Liu, C. Tanner, C. Leiggener, A. Neels,
L. Sanguinet, E. Levillain, S. Leutwyler, A. Hauser and
S. Decurtins, Chem.–Eur. J., 2007, 13, 3804; (d) S. Dolder,
S. Liu, F. Derf, M. Salle, A. Neels and S. Decurtins, Org. Lett.,
2007, 9, 3753; (e) K. Qvortrup, A. D. Bond, A. Nielsen,
C. J. Mckenzie, K. Kilsa and M. B. Nielsen, Chem. Commun.,
2008, 1986; (f) A. Andersson, F. Diederich and M. Nielsen, Org.
Biomol. Chem., 2009, 7, 3474; (g) J. Balandier, M. Chas, P. Dron,
S. Goeb, D. Canevet, A. Belyasmine, M. Allain and M. Salle,
J. Org. Chem., 2010, 75, 1589.
4 (a) H. Wu, D. Zhang, L. Su, K. Ohkubo, C. Zhang, S. Yin,
L. Mao, Z. Shuai, S. Fukuzumi and D. Zhu, J. Am. Chem. Soc.,
2007, 129, 6839; (b) H. Wu, D. Zhang, G. Zhang and D. Zhu,
J. Org. Chem., 2008, 73, 4271; (c) H. Wu, D. Zhang and D. Zhu,
Tetrahedron Lett., 2007, 48, 8951; (d) Y. Zeng, G. Zhang, D. Zhang
and D. Zhu, J. Org. Chem., 2009, 74, 4375.
5 (a) F. Buchholtz, A. Zelichenok and V. Krongauz, Macro-
molecules, 1993, 26, 906; (b) M. Lahav, E. Katz, A. Doron,
F. Patolsky and I. Willner, J. Am. Chem. Soc., 1999, 121, 862;
(c) A. J. Myles and N. R. Branda, J. Am. Chem. Soc., 2001, 123,
177; (d) J. M. Kim, H. Y. Shin, K. H. Park, T. H. Kim, S. Y. Ju,
D. K. Han and K. D. Ahn, Macromolecules, 2001, 34, 4391;
(e) A. J. Myles, B. Gorodetsky and N. R. Branda, Adv. Mater.,
2004, 16, 922; (f) A. J. Myles and N. R. Branda, Tetrahedron Lett.,
2000, 41, 3785; (g) R. Born, W. Fischer, D. Heger, B. Tokarczyk
and J. Wirz, Photochem. Photobiol. Sci., 2007, 6, 552.
Scheme 2 Illustration of the mechanism for the intramolecular
electron transfer after UV light irradiation and introducing metal ions.
metal ions (Pb2+ and Sc3+) after UV light irradiation were
recorded as depicted in Fig. S11. The ‘ana’ form of 2 generated
after UV light irradiation showed a reduction peak at ꢀ0.61 V.
Interestingly, the reduction peak was positively shifted after
introducing either Pb2+ or Sc3+. For instance, the reduction
peak potential of the ‘ana’ form of 2 (generated after UV light
irradiation for 25 min) was shifted from ꢀ0.61 V to ꢀ0.52 V in
the presence of 5.0 eq. of Sc3+. In the presence of Sc3+, the
cyclic voltammograms of 2 after UV light irradiation for
25 min were recorded at different scanning rates. By following
Fukuzumi’s method,10 the reduction potential of the ana form
of 2 was estimated to be ꢀ0.47 V in the presence of 5.0 eq. of
Sc3+ (Fig. S11–S12). Therefore, it can be concluded that the
electron accepting capacity of the ‘ana’ form of PNQ can be
enhanced in the presence of metal ions. Accordingly, it is
anticipated that the electron transfer between the TTF and
PNQ (‘ana’ form) units in dyad 1 would become more feasible
in the presence of metal ions. But, the electron transfer is still
not thermodynamically favorable by considering the oxidation
potential of the TTF unit (E1/2ox1 = 0.55 V). As for the metal
ion-promoted electron transfer within TTF–quinone dyads,
we propose that oxygen atoms of the oligoethylene glycol
chain, oxygen atoms of the radical anion of the PNQ
+
(‘ana’ form) unit and the sulfur atom from TTFꢁ in dyad 1
may coordinate with Pb2+/Sc3+/Zn2+ to stabilize the electron-
transfer state by increasing the interaction between the corres-
ponding cation and anion (see Scheme 2).11 It should be
mentioned that the electron accepting capacity of PNQ (trans
form) before UV light irradiation is rather weak,5c,e and an
obvious reduction peak cannot be detected even in the
presence of metal ions. Therefore, it is understandable that
intramolecular electron transfer within dyad 1 cannot take
place in the presence of metal ions before UV light irradiation.
In summary, a new TTF-based dyad 1 with a photochromic
PNQ unit was synthesized and studied. Both absorption and
ESR spectral investigations manifest that intramolecular elec-
6 The detailed synthetic procedures and characterization data for 1,
2 and 4 are provided in ESI.
7 It should be noted that the photoisomerization process of the PNQ
unit in dyad 1 is slow compared to that of compound 2 without the
TTF unit as shown in Fig. S2, where the variation of the absorbance
at 450 nm vs. the UV light irradiation time for dyad 1 and compound
2 is displayed. This is probably due to the photoinduced electron
transfer between the TTF and PNQ units in dyad 1, and as a result
the excited state of PNQ will be quenched to some extent.
8 X. Guo, D. Zhang, H. Zhang, Q. Fan, W. Xu, X. Ai, L. Fan and
D. Zhu, Tetrahedron, 2003, 59, 4843.
9 (a) P. P. Ashton, V. Balzani, J. Becher, A. Credi, M. C. T. Fyfe,
G. Matersteig, S. Menzer, M. B. Nielen, F. M. Raymo, J. F. Stoddart,
M. Venturi and D. J. Williams, J. Am. Chem. Soc., 1999, 121, 3951;
(b) H. Spanggaard, J. Prehn, M. B. Nielsen, E. Levillain, M. Allain
and J. Becher, J. Am. Chem. Soc., 2000, 122, 9486.
10 (a) S. Fukuzumi, N. Nishizawa and T. Tanaka, J. Chem. Soc., Perkin
Trans. 2, 1985, 371; (b) S. Fukuzumi, K. Hironaka, N. Nishizawa and
T. Tanaka, Bull. Chem. Soc. Jpn., 1983, 56, 2220.
tron transfer within dyad 1 in the presence of Pb2+/Sc3+
/
Zn2+ cannot occur, but it can take place after UV light
irradiation. Therefore, the metal ion-promoted electron transfer
within dyad 1 is switched on with UV light irradiation by
taking advantage of the photochromic feature of the PNQ unit
and the fact that the ‘trans’ and ‘ana’ forms of PNQ show
different electron accepting capacity.
11 The other oxygen atoms may also bind metal ion to further
stabilize the charge-transfer state.
c
324 Chem. Commun., 2011, 47, 322–324
This journal is The Royal Society of Chemistry 2011