X. Zhao et al. / Tetrahedron Letters 52 (2011) 665–667
667
Table 2
4. (a) Mizuta, S.; Shibata, N.; Goto, Y.; Furukawa, T.; Nakamura, S.; Toru, T. J. Am.
Chem. Soc. 2007, 129, 6394–6395; (b) Prakash, G. K. S.; Chacko, S.; Alconcel, S.;
Stewart, T.; Mathew, T.; Olah, G. A. Angew. Chem., Int. Ed. 2007, 46, 4933–4936;
(c) Furukawa, T.; Shibata, N.; Mizuta, S.; Nakamura, S.; Toru, T.; Shiro, M.
Angew. Chem., Int. Ed. 2008, 47, 8051–8054; (d) Prakash, G. K. S.; Ledneczki, I.;
Chacko, S.; Olah, G. A. Org. Lett. 2008, 10, 557–560; (e) Ni, C.; Zhang, L.; Hu, J. J.
Org. Chem. 2008, 73, 5699–5713; (f) Prakash, G. K. S.; Zhao, X.; Chacko, S.;
Wang, F.; Vaghoo, H.; Olah, G. A. Beilstein J. Org. Chem. 2008, 4, 17; (g) Alba, A.-
N.; Companyó, X.; Moyano, A.; Rios, R. Chem. Eur. J. 2009, 15, 7035–7038; (h)
Moon, H. W.; Cho, M. J.; Kim, D. Y. Tetrahedron Lett. 2009, 50, 4896–4898; (i)
Zhang, S.; Zhang, Y.; Ji, Y.; Li, H.; Wang, W. Chem. Commun. 2009, 4886–4888;
(j) Ullah, F.; Zhao, G.-L.; Deiana, L.; Zhu, M.; Dziedzic, P.; Ibrahem, I.; Hammar,
P.; Sun, J.; Crdova, A. Chem. Eur. J. 2009, 15, 10013–10017; (k) Prakash, G. K. S.;
Chacko, S.; Vaghoo, H.; Shao, N.; Gurung, L.; Mathew, T.; Olah, G. A. Org. Lett.
2009, 11, 1127–1130.
Regioselective Pd-catalyzed allylations of FBSM with allyl methyl carbonatesa
O
OMe
R
O
H
F
SO2Ph
PhO2S
SO2Ph
Pd(OAc)2 / DPPE
K2CO3, THF, rt
1
+
R
F
+
F
R
3
SO2Ph
4
PhO2S
SO2Ph
2
Entry
R
NuH
Product
Yieldb (%)
3/4c
1
2
3
4
5
6
7
8
9
10
11
12
13
Ph
2a
2a
2a
2a
2a
2a
2a
2a
2a
2a
2a
2bd
2a
3a
3b
3c
3d
3e
3f
3g
3h
3i
96
99
99
99
95
93
90
99
99
96
99
85
86
>99/1 (99/1)e
>99/1
>99/1
>99/1
>99/1
>99/1
>99/1
>99/1
>99/1
3-MeOC6H4
4-MeOC6H4
4-MeC6H4
4-BrC6H4
3-CF3C6H4
2-ClC6H4
4-ClC6H4
2-Thienyl
Cyclohexyl
4-PhC6H4
Ph
5. Liu, W.; Zheng, S.; He, H.; Zhao, X.; Dai, L.; You, S. Chem. Commun. 2009, 43,
6604–6606.
6. (a) Tsuji, J.; Takahashi, H.; Morikawa, M. Tetrahedron Lett. 1965, 3488–4387; (b)
Trost, B. M.; Fullerton, T. J. J. Am. Chem. Soc. 1973, 95, 292–294; For reviews, see:
(c) Trost, B. M. Chem. Rev. 1996, 96, 395–422; (d) Trost, B. M. Chem. Pharm. Bull.
2002, 50, 1; (e) Lu, Z.; Ma, S. Angew. Chem., Int. Ed. 2008, 47, 258–297.
7. (a) Bondi, A. J. Phys. Chem. 1964, 68, 441; (b) Nagel, J. K. J. Am. Chem. Soc. 1990,
112, 4740.
8. (a) [Pd(allyl)Cl]2 was also tested as a catalyst in this AAA reaction and it lad to
the formation of the allyl by-product. In the process of our investigation, an
example of Pd(PPh3)4 -catalyzed allylic alkylation of FBSM was reported by the
group of Jinbo Hu.; For details, see: (b) Ni, C.; Hu, J. Tetrahedron Lett. 2009, 50,
7252–7255.
3j
>99/1
>99/1
3k
3l
>99/1
Me
3mg
84/16 (88/12)f
9. (a) Van Haaren, R. J.; Goubitz, K.; Fraanje, J.; Van Strijdonck, G. P. F.; Oevering,
H.; Coussens, B.; Reek, J. N. H.; Kramer, P. C. J.; Van Leeuwen, P. W. N. M. Inorg.
Chem. 2001, 40, 3363–3372; (b) Tromp, M.; Van Bokhoven, J. A.; Van Haaren, R.
J.; Van Strijdonck, G. P. F.; Van der Eerden, A. M. J.; Van Leeuwen, P. W. N. M.;
Koningsberger, D. C. J. Am. Chem. Soc. 2002, 124, 14814–14815.
a
Reaction conditions: 2 mol % Pd(OAc)2, 4 mol % DPPE, 105 mol % of 1, 100 mol %
K2CO3, and 100 mol % 2 at room temperature.
b
Isolated yields.
c
Determined by 19F NMR.
d
Compound 2b was used instead of 2a in this case.
10. (a) Typical procedure for the preparation of 3k. To
a mixture of allylic
e
Determined by HPLC.
carbonates 1k (0.21 mmol, 105%), FBSM 2a (0.2 mmol, 100%), Pd(OAc)2
(0.02 mmol, 2%) and DPPE (0.04 mmol, 4%) in dry THF (2 mL) was added
K2CO3 (0.2 mmol, 100%), and the mixture was stirred at room temperature
under Ar2 atmosphere. After completion of the reaction, the reaction mixture
was filtered through a core with kieselguhr using methylene dichloride as an
eluent. Then the filtrate was concentrated and purified by flash
chromatography with silica gel (PE/EtOAc = 5:1) to give the desired product,
f
Determined by 1H NMR.
g
A mixture of (E)-isomer and (Z)-isomer in a ratio of 91/9 determined by 1H
NMR.
1H
NMR
Acknowledgments
(E)-4-(4-fluro-4,4-bis(phenylsulfonyl)but-1-enyl)biphenyl
(3k).
(300 MHz, CDCl3) d 7.93 (d, J = 8.4 Hz, 4H), 7.70–7.61 (m, 2H), 7.61–7.24 (m,
13H), 6.37 (d, J = 15.8 Hz, 1H), 6.01 (dt, J = 7.2 Hz, 15.6 Hz, 1H), 3.36 (dd,
J = 6.9 Hz, J = 18.0 Hz, 2H). 13C NMR (75 MHz, CDCl3) d 140.6, 140.4, 135.6,
135.3, 135.2, 130.9, 130.8, 129.0, 128.7, 127.3, 127.1, 126.8, 117.8 (d,
J = 6.5 Hz), 114.7 (d, J = 265.7 Hz), 33.9 (d, J = 18.0 Hz). 19F NMR (282 MHz,
CDCl3) d ꢀ141.9 (dd, J = 12.1 Hz, J = 16.3 Hz). MS (ESI, m/z): 529.1 (M+Na+).
HRMS (EI): calcd for C28H23FO4S2 (M+) 506.1022, found 506.1027. IR (KBr):
3526, 3060, 3030, 1484, 1446, 1346, 1310, 1150, 1076, 965, 752, 728,
We gratefully acknowledge the NSFC (20342003), Innovative
Program of Shanghai Education Committee (09ZZ36), Pu Jiang Pro-
gram of Shanghai (2010), 985 Program of Tongji University, Key
Laboratory of Fluorine Chemistry, Shanghai Institute of Organic
Chemistry, Chinese Academy of Sciences, State Key Laboratory of
Fine Chemicals, Dalian University of Technology for generous
financial support.
628 cmꢀ1
.
(b) Typical procedure for the synthesis of 3ka: 3k (73.1 mg, 0.14 mmol), Mg
(69 mg, 2.88 mmol), and MeOH (3 mL) was added in a dry Schlenk tube under
argon atmosphere. The reaction mixture was stirred overnight at room
temperature. When 3k was fully consumed, monitoring by TLC, the reaction
was quenched with sat. NH4Cl aq and extracted with Et2O (4 ꢁ 10 mL). The
combined organic phase was washed with brine, dried over Na2SO4 and
concentrated under reduced pressure. The crude product was purified by
column chromatography on silica gel (PE/EtOAc = 1/10) to give 4-(4-
fluorobuty)biphenyl (3ka) (31.6 mg, 99% yield) as yellow liquid. 1H NMR
(300 MHz, CDCl3) d 7.55 (dd, J = 18.5, J = 7.5 Hz, 4H), 7.42 (t, J = 7.2 Hz, 2H),
7.34–7.24 (m, 3H), 4.47 (dt, J = 47.4 Hz, J = 5.7 Hz, 2H), 2.70 (t, J = 6.9 Hz, 2H),
1.88–1.65 (m, 4H). 13C NMR (151 MHz, CDCl3) d 141.10, 141.06, 138.80, 128.82,
128.71, 127.09, 127.02, 127.00, 84.00 (d, J = 163.5 Hz), 35.04, 30.11, 27.00 (d,
J = 5.2 Hz). 19F NMR (282 MHz, CDCl3) d ꢀ218.17 (tt, J = 47.4 Hz, J = 25.4 Hz).
MS (EI, m/z): 228. HRMS (EI): calcd for C16H17F (M+) 228.1314, found 228.1316.
IR (KBr): 3443, 3021, 2928, 2852, 1486, 1383, 1260, 1005, 836, 763, 695.
11. (a) Brown, A. C.; Carpino, L. A. J. Org. Chem. 1985, 50, 1749–1750; (b) Kundig, E.
P., ; Cunningham, A. F., Jr. Tetrahedron 1988, 44, 6855–6860; For a review, see:
(c) Lee, G. H.; Youn, I. K.; Choi, E. B.; Lee, H. K.; Yon, G. H.; Yang, H. C.; Pak, C. S.
Curr. Org. Chem. 2004, 8, 1263–1287.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. (a) Biomedical Frontiers of Fluorine Chemistry; Ojima, I., McCarthy, J. R., Welch, J.
T., Eds.ACS Symposium Series 639; American Chemical Society: Washington,
DC, 1996; (b) Organofluorine Compounds in Medicinal Chemistry and Biomedical
Applications; Filler, R., Kobayashi, Y., Yagupolskii, L. M., Eds.; Elsevier:
Amsterdam, 1993; (c) Bégué, J.; Bonnet-Delpon, D. Bioorganic and Medicinal
Chemistry of Fluorine; Wiley, 2007.
2. (a) Raviol, A.; Stille, W.; Strobl, G. J. J. Chem. Phys. 1995, 103, 3788–3794; (b)
Kirsch, P. Modern Fluoroorganic Chemistry; Wiley-VCH: Weinheim, 2004; (c)
Hird, M. Chem. Soc. Rev. 2007, 36, 2070–2095.
12. Hulme, D. S.; Raynes, P. E.; Harrison, K. J. J. Chem. Soc., Chem. Commun. 1974,
98–99.
13. Janczewsk, M. Rocz. Chem. 1967, 41, 1145–1147.
3. (a) Fukuzumi, T.; Shibata, N.; Sugiura, M.; Yasui, H.; Nakamura, S.; Toru, T.
Angew. Chem., Int. Ed. 2006, 45, 4973–4977; (b) Ni, C.; Li, Y.; Hu, J. J. Org. Chem.
2006, 71, 6829–6833.