186
M. Hussain et al. / Tetrahedron Letters 52 (2011) 184–187
2. Weitz, E.; Scheffer, A. Chem. Ber. 1921, 54, 2343.
3. Bergmann, E. D. J. Org. Chem. 1956, 21, 461.
4. Frank, R. L.; Eklund, H.; Richter, J. W.; Vanneman, C. R.; Wennerberg, A. N. J. Am.
Chem. Soc. 1944, 66, 1.
5. Beringer, F. M.; Forgione, P. S.; Yudis, M. D. Tetrahedron 1960, 8, 49.
6. Koelsch, F. J. Am. Chem. Soc. 1932, 54, 2487.
7. Jeffrey, J. L.; Sarpong, R. Org. Lett. 2009, 11, 5450.
8. (a) Morimoto, T.; Yamasaki, K.; Hirano, A.; Tsutsumi, K.; Kagawa, N.; Kakiuchi,
K.; Harada, Y.; Fukumoto, Y.; Chatani, N.; Nishioka, T. Org. Lett. 2009, 11, 1777;
For a classic synthesis of 2,3-diphenyl-1H-inden-1-one starting with diphenyl
acetylene, see: (b) Eisch, J. J.; Kaska, W. C. J. Am. Chem. Soc. 1966, 88, 2976.
9. For reviews of cross-coupling reactions of polyhalogenated heterocycles, see:
(a) Schröter, S.; Stock, C.; Bach, T. Tetrahedron 2005, 61, 2245; (b) Schnürch, M.;
Flasik, R.; Khan, A. F.; Spina, M.; Mihovilovic, M. D.; Stanetty, P. Eur. J. Org. Chem.
2006, 3283; (c) Wang, R.; Manabe, K. Synthesis 2009, 1405.
10. (a) Dang, T. T.; Dang, T. T.; Ahmad, R.; Reinke, H.; Langer, P. Tetrahedron Lett.
2008, 49, 1698; (b) Dang, T. T.; Villinger, A.; Langer, P. Adv. Synth. Catal. 2008,
350, 2109; (c) Hussain, M.; Nguyen, T. H.; Langer, P. Tetrahedron Lett. 2009, 50,
3929; (d) Tengho Toguem, S.-M.; Hussain, M.; Malik, I.; Villinger, A.; Langer, P.
Tetrahedron Lett. 2009, 50, 4962; (e) Hussain, M.; Malik, I.; Langer, P. Synlett
2009, 2691; (f) Dang, T. T.; Dang, T. T.; Rasool, N.; Villinger, A.; Langer, P. Adv.
Synth. Catal. 2009, 351, 1595; (g) Ullah, I.; Khera, R. A.; Hussain, M.; Langer, P.
Tetrahedron Lett. 2009, 50, 4651; (h) Nawaz, M.; Farooq, M. I.; Obaid-Ur-
Rahman, A.; Khera, R. A.; Villinger, A.; Langer, P. Synlett 2010, 150.
Figure 2. Crystal structure of 4c.
11. (a) Sulikowski, G. A.; Agnelli, F.; Corbett, R. M. J. Org. Chem. 2000, 65, 337; (b)
Bellina, F.; Anselmi, C.; Viel, S.; Mannina, L.; Rossi, R. Tetrahedron 2001, 57,
9997; (c) Bellina, F.; Anselmi, C.; Rossi, R. Tetrahedron Lett. 2001, 42, 3851.
12. (a) Liebermann, C. Chem. Ber. 1898, 31, 2083; (b) Liebermann, C. 1899, 32, 261.;
(c) Liebermann, C. Chem. Ber. 1899, 32, 920; (d) Liebermann, C. Chem. Ber. 1900,
33, 569; (e) Simonis, H.; Kirschten, C. Chem. Ber. 1912, 45, 567.
More electron deficient
Br
13. Basurto, S.; Garcia, S.; Neo, A. G.; Torroba, T.; Marcos, C. F.; Miguel, D.; Barbera,
J.; Blanca Ros, M.; de la Fuente, M. R. Chem. Eur. J. 2005, 11, 5362.
Br
14. General procedure for the synthesis of 3a–e and 4a–e: The reaction was carried
out in a pressure tube. To a suspension of 1 (144 mg, 0.5 mmol), Pd(PPh3)4
(2.5–3.0 mol % per cross-coupling), and boronic acid 2 (0.5–0.55 mmol per
cross-coupling) in dioxane (5 mL) was added a 2 M solution of K2CO3 (aq)
(1 mL). The mixture was heated at the indicated temperature (40–70 °C) under
Argon atmosphere for 4–6 h. The reaction was diluted with water and
extracted with CH2Cl2 (3 ꢀ 25 mL). The combined organic layers were dried
(Na2SO4), filtered, and the filtrate was concentrated in vacuo. The resulting
residue was purified by column chromatography (silica gel, EtOAc/heptanes).
15. 2,3-Diphenyl-1H-inden-1-one (3d). Starting with 1 (144 mg, 0.5 mmol) and
phenylboronic acid (135 mg, 1.1 mmol), 3d was isolated as a colorless solid
(137 mg, 97%). Reaction temperature: 70 °C. 1H NMR (300 MHz, CDCl3):
d = 7.04–7.07 (m, 1H, ArH), 7.16–7.22 (m, 6H, ArH), 7.30–7.34 (m, 6H, ArH),
7.45–7.51 (m, 1H, ArH). 13C NMR (62.9 MHz, CDCl3): d = 121.3, 123.0, 127.7,
128.1, 128.5, 128.8, 129.0, 129.3, 130.0 (CH), 130.8, 132.4, 132.7 (C), 133.4
Less electron deficient
O
1
Scheme 4. Possible explanation for the site-selectivity of cross-coupling reactions
of 1.
The structures of the products were established by 2D NMR
experiments (NOESY, HMBC). The structures of 3d and 4c were
independently confirmed by X-ray crystal structure analyses (Figs.
1 and 2).19
The site-selective formation of 4a–e and 5a–e can be explained
by electronic reasons (Scheme 4). The first attack of palladium(0)
catalyzed cross-coupling reactions generally occurs at the more
electron deficient and sterically less hindered position.9,20 Position
3 of 2,3-dibromo-1H-inden-1-one (1) is considerably more elec-
tron-deficient than position 2. Handy and Zhang reported a simple
guide for the prediction of the site-selectivity of palladium(0) cat-
alyzed cross-coupling reactions of polyhalogenated substrates
based on the 1H NMR chemical shift values of the non-halogenated
analogs.20 In fact, the 1H NMR signal of proton H-3 of inden-1-one
is shifted downfield compared to proton H-2.
In conclusion, we have reported site-selective Suzuki–Miyaura
reactions of 2,3-dibromo-1H-inden-1-one which provide a conve-
nient and site-selective approach to 2,3-diaryl-1H-inden-1-ones
and 3-aryl-2-bromo-1H-inden-1-ones. The scope and applications
of the methodology outlined herein is currently under investiga-
tion in our laboratories.
(CH), 145.2, 155.3 (C), 196.0 (CO). IR (KBr):
m = 3380, 3070 (w), 1700, 1604,
1455, 1444, 1348, 1178, 1157, 1149, 1081, 1065 (m), 1027, 1010, 999, 929, 918,
858, 840, 807 (w), 780, 760, 751, 723, 699, 675 (s), 637, 612, 587, 549 (s), 1205,
1183, 1156, 1065, 1042 (m), 818, 742, 701 (s), 617, 610, 587, 562, 537 (m)
cmꢁ1. GC–MS (EI, 70 eV): m/z (%) = 282 ([M]+, 100), 265 (16), 252 (47), 239 (03),
176 (06), 126 (12). HRMS (EI, 70 eV): calcd for C21H14O [M]+: 282.10392;
found: 282.10341.
16. 2-Bromo-3-(2,6-dimethoxyphenyl)-1H-inden-1-one (4c). Starting with
(144 mg, 0.5 mmol), Pd(PPh3)4 (18 mg, 3 mol %) and
1
2,6-
dimethoxyphenylboronic acid (91 mg, 0.5 mmol), 4c was isolated as
a
colorless crystalline solid (143 mg, 83%). Reaction temperature: 40 °C. 1H
NMR (250 MHz, CDCl3): d = 3.71 (s, 6H, 2OCH3), 6.58–6.68 (m, 3H, ArH), 7.05–
7.18 (m, 2H, ArH), 7.22–7.34 (m, 2H, ArH). 13C NMR (62.9 MHz, CDCl3): d = 54.8
(OCH3), 103.0 (CH), 107.8 (C), 120.1 (CH), 120.6 (C), 121.8, 127.1 (CH), 128.3
(C), 129.8, 132.7 (CH), 144.3, 153.3, 156.7 (C), 189.1 (CO). IR (KBr):
m = 3009,
2965, 2934, 2836 (w), 1729, 1594, 1583, 1470, 1457, 1441, 1423 (s), 1358,
1300 (w), 1290 (m), 1249 (s), 1189, 1169, 1151 (w), 1101, 1078, 1028 (s), 952,
942, 918, 903, 873, 845 (w), 817, 800, 771, 756, 729, 721 (m), 703 (s), 667, 650,
633, 614, 595, 577, 544 (w) cmꢁ1. GC–MS (EI, 70 eV): m/z (%) = 344 ([M]+, 79Br,
43), 265 (13), 250 (100), 234 (16), 207 (14), 165 (14). HRMS (EI, 70 eV): calcd
for C17H13O379Br [M]+: 344.00481; found: 344.00480.
17. General procedure for the one-pot synthesis of 5a–e: The reaction was carried out
in a pressure tube. To a suspension of 1 (288 mg, 1.0 mmol), Pd(PPh3)4 (35 mg,
Acknowledgments
3 mol %), and Ar1B(OH)2 (1.0 mmol) in dioxane (5 mL) was added
a 2 M
solution of K2CO3 (aq) (1 mL). The mixture was heated at 40–45 °C under Argon
atmosphere for 6 h. The reaction mixture was cooled to 20 °C and Ar2B(OH)2
(1.1 mmol) and an additional amount of Pd(PPh3)4 (35 mg, 3 mol %) was added.
The reaction mixture was heated under Argon atmosphere for 6 h at 70 °C.
After cooling to 20 °C, the mixture was diluted with water and extracted with
CH2Cl2 (3 ꢀ 25 mL). The combined organic layers were dried (Na2SO4) and
concentrated in vacuo. The residue was purified by column chromatography
(EtOAc/heptanes).
Financial support by the State of Vietnam (MOET scholarship for
N.T.H.), by the State of Pakistan (HEC scholarship for R.A.K.), by the
DAAD (scholarship for R.A.K.) and by the State of Mecklenburg-
Vorpommern (scholarships for M.H. and N.T.H.) is gratefully
acknowledged.
18. 2-(4-Methoxyphenyl)-3-(p-tolyl)-1H-inden-1-one (5a). Starting with 1 (288 mg,
References and notes
1.0 mmol),
p-tolylboronic
acid
(136 mg,
1.0 mmol),
and
4-
a
methoxyphenylboronic acid (167 mg, 1.1 mmol), 5a was isolated as
1. (a) Anstead, G. M.; Wilson, S. R.; Katzenellenbogen, J. A. J. Med. Chem. 1989, 32,
2163; (b) Hajela, K.; Kapil, R. S. Ind. J. Chem., Sect. B 1995, 34, 361; (c) McDevitt,
R. E.; Malamas, M. S.; Manas, E. S.; Unwalla, R. J.; Xu, Z. B.; Miller, C. P.; Harris,
H. A. Bioorg. Med. Chem. Lett. 2005, 15, 3137.
colorless crystalline solid (303 mg, 93%). Reaction temperature: 45 °C (first
step), 70 °C (second step). 1H NMR (250 MHz, CDCl3): d = 2.41 (s, 3H, CH3), 3.80
(s, 3H, OCH3), 6.81 (d, J = 8.5 Hz, 2H, ArH), 7.12–7.21 (m, 1H), ArH), 7.14–7.28
(m, 8H, ArH), 7.52–57 (m, 1H, ArH). 13C NMR (62.9 MHz, CDCl3): d = 21.5 (CH3),