10.1002/ejoc.202100883
European Journal of Organic Chemistry
FULL PAPER
[1]
a) Y. Qin, L. Zhu, S. Luo, Chem. Rev. 2017, 117, 9433–9520; b) Á.
Polonka-Bálint, C. Saraceno, K. Ludányi, A. Bényei, P. Mátyus, Synlett
2008, 2008, 2846–2850; c) P. Mátyus, O. Éliás, P. Tapolcsányi, Á.
Polonka-Bálint, B. Halász-Dajka, Synthesis 2006, 2006, 2625–2639; d)
O. Meth-Cohn, in Advances in Heterocyclic Chemistry (Ed.: A.R.
Katritzky), Academic Press, 1996, pp. 1–37; e) O. Meth-Cohn, H.
Suschitzky, in Advances in Heterocyclic Chemistry (Eds.: A.R. Katritzky,
A.J. Boulton), Academic Press, 1972, pp. 211–278.
Conclusion
In summary, we have shown that B(C6F5)3 is a viable catalyst for
the redox isomerization of 2-amino chalcones. The
tetrahydroquinoline derivatives are formed in high yield. In
particular, the pyrrolo derivative cis-2f was obtained as single
diastereomer.
Mechanistic,
kinetic
and
computational
experiments support that the redox isomerization proceeds
through Lewis acid induced hydride shift in contrast to hydride
abstraction by the borane.
[2]
[3]
[4]
a) M. Tobisu, N. Chatani, Angew. Chem. Int. Ed. 2006, 45, 1683–1684;
b) B. Peng, N. Maulide, Chem. Eur. J. 2013, 19, 13274–13287; c) M.
Wang, ChemCatChem 2013, 5, 1291–1293; d) M. C. Haibach, D. Seidel,
Angew. Chem. Int. Ed. 2014, 53, 5010–5036; e) L. Wang, J. Xiao, Adv.
Synth. Catal. 2014, 356, 1137–1171; f)S. J. Kwon, D. Y. Kim, Chem.
Record 2016, 16, 1191–1203.
Experimental Section
a) K. Mori, K. Kurihara, S. Yabe, M. Yamanaka, T. Akiyama, J. Am. Chem.
Soc. 2014, 136, 3744–3747; b) K. Mori, R. Isogai, Y. Kamei, M.
Yamanaka, T. Akiyama, J. Am. Chem. Soc. 2018, 140, 6203–6207; c) M.
Kataoka, Y. Otawa, N. Ido, K. Mori, Org. Lett. 2019, 21, 9334–9338; d)
K. Yokoo, K. Mori, Org. Lett. 2020, 22, 244–248; e) K. Yokoo, D. Sakai,
K. Mori, Org. Lett. 2020, 22, 5801–5805.
Exemplary procedure for the redox isomerization of 1a.
In a glovebox, a vial was charged with the α,β-unsaturated ketone 1a (0.25
mmol, 1.00 equiv.) and B(C6F5)3 (3a) (10 mol%, 0.025 mmol, 12.8 mg,
0.010 equiv.). The mixture was dissolved in abs. CHCl3 (2.50 mL). The vial
was heated to 60 °C for 18 h. The reaction mixture was cooled to room
temperature, diluted with CH2Cl2 (10 ml) and poured into water (10 mL).
The aqueous phase was extracted twice with CH2Cl2 and the combined
organic phase was dried over Na2SO4. The solvent was removed under
reduced pressure. After purification by column chromatography (silica,
mixtures of cyclohexane and ethyl acetate (50:1) the product was obtained
as yellow solid in 85% yield as diastereomeric mixture with a ratio of
cis/trans 2.1:1.
a) L. Chen, L. Zhang, J. Lv, J.-P. Cheng, S. Luo, Chem. Eur. J. 2012, 18,
8891–8895; b) S. Murarka, C. Zhang, M. D. Konieczynska, D. Seidel,
Org. Lett. 2009, 11, 129–132; c) S. Murarka, I. Deb, C. Zhang, D. Seidel,
J. Am. Chem. Soc. 2009, 131, 13226–13227.
[5]
[6]
a) K. M. McQuaid, D. Sames, J. Am. Chem. Soc. 2009, 131, 402–403;
b) S. J. Pastine, K. M. McQuaid, D. Sames, J. Am. Chem. Soc. 2005,
127, 12180–12181.
a) I. D. Jurberg, B. Peng, E. Wöstefeld, M. Wasserloos, N. Maulide,
Angew. Chem. Int. Ed. 2012, 51, 1950–1953; b) M. Alajarin, M. Marin-
Luna, A. Vidal, Adv. Synth. Catal. 2011, 353, 557–562; c) K. M. McQuaid,
J. Z. Long, D. Sames, Org. Lett. 2009, 11, 2972–2975; e) S. J. Mahoney,
D. T. Moon, J. Hollinger, E. Fillion, Tetrahedron Letters 2009, 50, 4706–
4709.
1H-NMR (700 MHz, 298 K, CDCl3) cis diastereomer δ = 7.80-7.76 (m, 2H,
HAr), 7.49 (m, 1H, HAr), 7.41-7.36 (m, 3H, HAr), 7.34-7.31 (m, 1H, HAr), 7.27-
7.14 (m, 8H, HAr), 7.07 (m, 1H, HAr), 7.01 (m, 1H, HAr), 6.68-6.65 (m, 2H,
[7]
a) K. Mori, K. Ehara, K. Kurihara, T. Akiyama, J. Am. Chem. Soc. 2011,
133, 6166–6169; b) M. C. Haibach, I. Deb, C. K. De, D. Seidel, J. Am.
Chem. Soc. 2011, 133, 2100–2103; c) Z. Du, W.-Y. Siau, J. Wang,
Tetrahedron Letters 2011, 52, 6137–6141.
3
2
HAr), 4.98 (d, JHH = 5.9 Hz, 1H, NCHPh), 4.63 (d, JHH = 16.8 Hz, 1H,
NCH2), 4.14 (d, 2JHH = 16.8 Hz, 1H, NCH2), 3.98-3.94 (m, 1H, C(=O)CH),
2
3
3.06 (dd, JHH = 15.5 Hz, JHH = 7.2 Hz, 1H, C(=O)CHCH2), 2.97 (dd,
2JHH = 15.5 Hz, JHH = 4.8 Hz, 1H, C(=O)CHCH2); trans diastereomer
3
[8]
[9]
a) S. Zhao, X. Wang, P. Wang, G. Wang, W. Zhao, X. Tang, M. Guo, Org.
Lett. 2019, 21, 3990–3993; b) G. Wicker, R. Schoch, J. Paradies, Org.
Lett. 2021, 23, 3626–3630.
δ = 7.88-7.84 (m, 2H, HAr), 7.58 (m, 1H, HAr), 7.47-7.43 (m, 2H, HAr), 7.34-
7.31 (m, 1H, HAr), 7.27-7.14 (m, 8H, HAr), 7.12 (m, 1H, HAr), 6.77-6.74 (m,
2H, HAr), 6.72 (m, 1H, HAr), 6.70-6.68 (m, 1H, HAr), 5.04 (d, 3JHH = 4.3 Hz,
1H, NCHPh), 4.75 (d, 2JHH = 17.2 Hz, 1H, NCH2), 4.22 (dt, 3JHH = 13.1 Hz,
4.0 Hz, 1H, C(=O)CH), 4.16 (d, 2JHH = 17.2 Hz, 1H, NCH2), 3.25-3.18 (m,
1H, C(=O)CHCH2), 2.80-2.74 (m, 1H, C(=O)CHCH2).
a) W. E. Piers, T. Chivers, Chem. Soc. Rev. 1997, 26, 345–354; b) G.
Erker, Dalton Trans. 2005, 1883–1890; b) W. Li, T. Werner, Org. Lett.
2017, 19, 2568–2571; c) J.-H. Zhou, B. Jiang, F.-F. Meng, Y.-H. Xu, T.-
P. Loh, Org. Lett. 2015, 17, 4432–4435; d) K. Ishihara, N. Hanaki, M.
Funahashi, M. Miyata, H. Yamamoto, BCSJ 1995, 68, 1721–1730; e) G.
Kumar, S. Roy, I. Chatterjee, Org. Biomol. Chem. 2021, 19, 1230–1267.
13C-NMR (176 MHz, 298 K, CDCl3) cis diastereomer δ = 200.5 (Cq), 145.4
(Cq), 142.9 (Cq), 138.5 (Cq), 136.5 (Cq), 133.4 (CH), 128.9 (CH), 128.8
(CH), 128.6 (CH), 128.5(CH), 128.4 (CH), 127.8(CH), 127.4 (CH), 127.1
(CH), 126.9 (CH), 122.1 (Cq), 117.0 (CH), 112.2 (CH), 63.5 (CH), 53.1
(NCH2), 49.0 (CH), 29.4 (C(=O)CHCH2); trans diastereomer δ = 199.1 (Cq),
144.9 (Cq), 139.1 (Cq), 138.7 (Cq), 136.9 (Cq), 133.1 (CH), 129.9 (CH),
129.2 (CH), 129.1 (CH), 128.3(CH), 128.1 (CH), 127.9(CH), 127.7 (CH),
127.4 (CH), 126.7 (CH), 120.7 (Cq), 116.6 (CH), 112.5 (CH), 63.3 (CH),
53.1 (NCH2), 45.8 (CH), 25.2 (C(=O)CHCH2).
[10] M. Shang, J. Z. Chan, M. Cao, Y. Chang, Q. Wang, B. Cook, S. Torker,
M. Wasa, J. Am. Chem. Soc. 2018, 140, 10593–10601.
[11] A. F. G. Maier, S. Tussing, T. Schneider, U. Flörke, Z.-W. Qu, S. Grimme,
J. Paradies, Angew. Chem. Int. Ed. 2016, 55, 12219–12223.
[12] a) S. Basak, L. Winfrey, B. A. Kustiana, R. L. Melen, L. C. Morrill, A. P.
Pulis, Chem. Soc. Rev. 2021, DOI 10.1039/D0CS00531B; b) Y. Ma, S.-
J. Lou, Z. Hou, Chem. Soc. Rev. 2021, 50, 1945–1967.
HRMS (ESI) exact mass for [MH]+(C29H26NO): calc m/z 404.2014, found
[13] a) A. G. Massey, A. J. Park, F. G. A. Stone, Proc. Chem. Soc. 1963, 212;
b) M. Ullrich, A. J. Lough, D. W. Stephan, J. Am. Chem. Soc. 2009, 131,
52–53; c) L. Köring, N. A. Sitte, M. Bursch, S. Grimme, J. H. H. Paradies,
Chem. Eur. J. 2021 DOI 10.1002/chem.202100041; d) J. A. Nicasio, S.
Steinberg, B. Inés, M. Alcarazo, Chem. Eur. J. 2013, 19, 11016–11020;
e) D. Naumann, H. Butler, R. Gnann, Z. anorg. allg. Chem. 1992, 618,
74–76; f) N. A. Sitte, M. Bursch, S. Grimme, J. Paradies, J. Am. Chem.
Soc. 2019, 141, 159–162; g) L. Greb, C.-G. Daniliuc, K. Bergander, J.
Paradies, Angew. Chem. Int. Ed. 2013, 52, 5876–5879; h) S. Tussing, L.
Greb, S. Tamke, B. Schirmer, C. Muhle-Goll, B. Luy, J. Paradies, Chem.
Eur. J. 2015, 21, 8056–8059; i) S. Tussing, K. Kaupmees, J. Paradies,
Chem. Eur. J. 2016, 22, 7422–7426; j) N. A. Sitte, L. Köring, P. W.
Roesky, J. Paradies, Org. Biomol. Chem. 2020, 18, 7321–7325.
404.1988
Acknowledgements
The German Science Foundation (DFG) and the Paderborn
University is acknowledged for financial support to J.P. (PA
1562/16-1) and for a PhD scholarship to R. Z.
Keywords: Redox isomerization • Tert-amino effect • Nitrogen
heterocycle • Boranes • Hydride shift
[14] a) S. Grimme, J. G. Brandenburg, C. Bannwarth, A. Hansen, J. Chem.
Phys. 2015, 143, 054107; b) H. Kruse, S. Grimme, J. Chem. Phys. 2012,
136, 154101; c) S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem.
5
This article is protected by copyright. All rights reserved.