Asymmetric Friedel–Crafts Alkylation of Indoles
[3]
[4]
a) A. Erkkila, I. Majander, P. M. Pihko, Chem. Rev. 2007, 107,
5416–5470; b) S. Mukherjee, J. W. Yang, S. Hoffmann, B. List,
Chem. Rev. 2007, 107, 5471–5569; c) L. W. Xu, Y. Lu, Org.
Biomol. Chem. 2008, 6, 2047–2053; d) L. W. Xu, J. Luo, Y. Lu,
Chem. Commun. 2009, 1807–1821; e) S. Bertelsen, K. A.
Jørgensen, Chem. Soc. Rev. 2009, 38, 2178–2189 and references
cited in.
a) C. Palomo, A. Landa, A. Mielgo, M. Oiarbide, Á. Puente,
S. Vera, Angew. Chem. 2007, 119, 8583–8587; Angew. Chem.
Int. Ed. 2007, 46, 8431–8435; b) L. W. Xu, L. Li, Z. H. Shi,
Adv. Synth. Catal. 2010, 352, 243–279.
a) C. Palomo, A. Mielgo, Angew. Chem. 2006, 118, 8042–8046;
Angew. Chem. Int. Ed. 2006, 45, 7876–7880; b) A. Mielgo, C.
Palomo, Chem. Asian J. 2008, 3, 922–948.
a) M. Marigo, T. C. Wabnitz, D. Fielenbach, K. A. Jørgensen,
Angew. Chem. 2005, 117, 804–807; Angew. Chem. Int. Ed. 2005,
44, 794–797; b) Y. Hayashi, H. Gotoh, T. Hayashi, M. Shoji,
Angew. Chem. 2005, 117, 4284–4287; Angew. Chem. Int. Ed.
2005, 44, 4212–4215; c) M. Marigo, J. Franzén, T. B. Polsen,
W. Zhang, K. A. Jørgensen, J. Am. Chem. Soc. 2005, 127,
6964–6965.
a) N. Bravo, I. Mon, X. Companyó, A. N. Alba, A. Moyano,
R. Rios, Tetrahedron Lett. 2009, 50, 6624–6626; b) C. F. Li, H.
Liu, J. Liao, Y. J. Cao, X. P. Liu, W. J. Xiao, Org. Lett. 2007,
9, 1847–1850; c) H. D. King, Z. Meng, D. Denhart, R. Matt-
son, R. Kimura, D. Wu, Q. Cao, J. E. Macor, Org. Lett. 2005,
7, 3437–3440; d) J. F. Austin, S. G. Kim, C. J. Sinz, W. J. Xiao,
D. W. C. MacMillan, Proc. Natl. Acad. Sci. USA 2004, 101,
5482–5487; e) N. A. Para, D. W. C. MacMillan, J. Am. Chem.
Soc. 2002, 124, 7894–7895; f) J. F. Austin, D. W. C. MacMillan,
J. Am. Chem. Soc. 2002, 124, 1172–1173; g) N. A. Paras,
D. W. C. MacMillan, J. Am. Chem. Soc. 2001, 123, 4370–4371.
Selected examples: a) V. Terrasson, R. M. de Figueiredo, J. M.
Campagne, Eur. J. Org. Chem. 2010, 2635–2655; b) K. A.
Miller, S. Tsukamoto, R. M. Williams, Nature Chem. 2009, 1,
63–68; c) E. M. Karg, S. Luderer, C. Pergola, U. Buehring, A.
Rossi, H. Northoff, L. Sautebin, R. Troschutz, O. Werz, J.
Med. Chem. 2009, 52, 3474–3483; d) W. Zhou, L. W. Xu, L.
Li, L. Yang, C. G. Xia, Eur. J. Org. Chem. 2006, 5225–5227; e)
A. C. Kinsman, M. A. Kerr, J. Am. Chem. Soc. 2003, 125,
14120–14125.
silica gel F254 TLC plates and visualized with ultraviolet light.
HPLC was carried out with a Waters 2695 Millennium system
equipped with a photodiode array detector. EI and CI mass spectra
were performed with a Trace DSQ GC–MS spectrometer. Friedel–
Crafts reaction products were known and confirmed by GC–MS
and usual spectral methods (1H NMR, 13C NMR). ESI MS analy-
sis of the samples were performed with an LCQ advantage mass
spectrometer (ThermoFisher Company, USA) equipped with an
ESI ion source in the positive ionization mode; data acquisitioning
was performed with Xcalibur software (Version 1.4). Diarylprolinol
silyl ethers 4–6 were synthesized according to reported pro-
cedures.[6,11]
[5]
[6]
Typical Procedure for the Asymmetric Friedel–Crafts Alkylation of
Indoles with α,β-Unsaturated Aldehydes: To a solution of catalyst
(S)-5 (32 mg, 0.10 mmol, 20 mol-%) dissolved in CH3CN (1 mL) in
a 12-mL vial at room temperature was added cinnamaldehyde
(66 mg, 0.5 mmol). The mixture was stirred for 30 min, and indole
(70 mg, 0.6 mmol) was added to the mixture. The vial was capped,
and the mixture was stirred at –20 °C for 45 h. An excess amount
of NaBH4 (57 mg, 1.5 mmol) was added, followed by the addition
of MeOH (1 mL). Then, the –20 °C cooling bath was replaced by
an ice bath, and the mixture was stirred for a further 20 min. The
mixture was slowly added to sat. NH4Cl (5 mL) at 0 °C and ex-
tracted with Et2O (10 ϫ 3 mL). The organic layer was collected,
washed with H2O (5 mL) and brine (5 mL), then dried with anhy-
drous Na2SO4, and concentrated under reduced pressure. The resi-
due was purified by silica gel column chromatography (EtOAc/hex-
ane, 1:1) to afford 3a (98%ee). This is a known compound with
spectroscopic properties in accordance with those reported.[7,9,10]
1H NMR (400 MHz, CDCl3): δ = 8.00 (br. s, 1 H), 7.45 (d, J =
8.0 Hz, 1 H), 7.25–7.34 (m, 5 H), 7.16 (dd, J = 7.2, 15.4 Hz, 2 H),
7.07 (s, 1 H), 7.03 (t, J = 7.2 Hz, 1 H), 4.42 (t, J = 8.0 Hz, 1 H),
3.63–3.73 (m, 2 H), 2.44–2.52 (m, 1 H), 2.24–2.33 (m, 1 H) ppm.
HPLC (Daicel Chiralpak OD-H, hexane/2-propanol = 80:20, flow
rate = 1.0 mL/min): tr = 15.34, 18.40 min.
[7]
[8]
Supporting Information (see footnote on the first page of this arti-
cle): General remarks, spectroscopic data, and HPLC diagrams for
the Friedel–Crafts adducts; 29Si NMR spectra of diarylprolinol silyl
ethers 4–6 and their enamine and iminium intermediates; circular
dichroism and UV/Vis absorption spectra of catalysts 4–6 in
CH3CN.
[9]
Z. J. Wang, J. G. Yang, J. Jin, X. Lv, W. Bao, Synthesis 2009,
3994–4000.
L. Hong, L. Wang, C. Chen, B. Zhang, R. Wang, Adv. Synth.
Catal. 2009, 351, 772–778.
a) J. B. Wu, B. Ni, A. D. Headley, Org. Lett. 2009, 11, 3354–
3356; b) Z. Zheng, B. L. Perkins, B. Ni, J. Am. Chem. Soc.
2010, 132, 50–51.
[10]
[11]
[12]
a) E. Maerten, S. Cabrera, A. Kjærsgaard, K. A. Jørgensen, J.
Org. Chem. 2007, 72, 8893–8903; b) D. Seebach, U. Grosˇelj,
D. M. Badine, W. B. Schweizer, A. K. Beck, Helv. Chim. Acta
2008, 91, 1999–2034; c) I. Ibrahem, P. Hammar, J. Vesely, R.
Rios, L. Eriksson, A. Córdova, Adv. Synth. Catal. 2008, 350,
1875–1884; d) P. Dinér, A. Kjærsgaard, M. A. Lie, K. A.
Jørgensen, Chem. Eur. J. 2008, 14, 122–127; e) U. Grosˇelj, D.
Seebach, D. M. Badine, W. B. Schweizer, A. K. Beck, I. Kross-
ing, P. Klose, Y. Hayashi, T. Uchimaru, Helv. Chim. Acta 2009,
92, 1225–1259; f) C. T. Wong, Tetrahedron 2009, 65, 7491–7497.
A. D. Dilman, S. L. Ioffe, Chem. Rev. 2003, 103, 733–772.
a) C. Chuit, R. J. P. Corriu, C. Reye, J. C. Young, Chem. Rev.
1993, 93, 1371–1448; b) C. Chuit, R. J. P. Corriu, C. Reye in
Chemistry of Hypervalent Compounds (Ed.: K.-y. Akiba),
Wiley-VCH, 1999, ch. 4, pp. 81–146; c) C. Brellère, F. Carré,
R. J. P. Corriu, M. Poirier, G. Royo, Organometallics 1986, 5,
388–390; d) F. H. Carré, R. J. P. Corriu, G. F. Lanneau, Z. Yu,
Organometallics 1991, 10, 1236–1243; e) K. Tamao, Y. Tarao,
Y. Nakagawa, K. Nagata, Y. Ito, Organometallics 1993, 12,
1113–1120; f) J. Belzner, D. Schär, B. O. Kneisel, R. Herbst-
Irmer, Organometallics 1995, 14, 1840–1843; g) K. Tamao, K.
Nagata, M. Asahara, A. Kawachi, Y. Ito, M. Shiro, J. Am.
Acknowledgments
This project was supported by the National Natural Science Foun-
dation of China (NSFC, No. 20973051), the Zhejiang Provincial
Natural Science Foundation of China (ZPNSFC, Y4090139) and
the Hangzhou Science and Technology Program (20090231 T03).
X. L. W. is greatly indebted to Prof. Shibasaki Masakatsu, The
University of Tokyo, and Prof. Chun-Gu Xia, Lanzhou Institute of
Chemical Physics (CAS), for their help.
[13]
[14]
[1] a) B. List, R. A. Lerner, C. F. Barbas III, J. Am. Chem. Soc.
2000, 122, 2395–2396; b) K. A. Ahrendt, C. J. Borths, D. W. C.
MacMillan, J. Am. Chem. Soc. 2000, 122, 4243–4244.
[2] a) D. Ender, M. R. M. Hüttl, C. Grondal, G. Raabe, Nature
2006, 441, 861–863; b) D. W. C. MacMillan, Nature 2008, 455,
304–308; c) J. W. Yang, C. Chandler, M. Stadler, D. Kampen,
B. List, Nature 2008, 452, 453–455; d) H. Xu, S. J. Zuend,
M. G. Woll, Y. Tao, E. N. Jacobsen, Science 2010, 327, 986–
990.
Eur. J. Org. Chem. 2011, 66–70
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
69