610
J. Benites et al. / Tetrahedron Letters 52 (2011) 609–611
benzophenone, which indicates that the use of this compound does
not influence the yield of the phothoacylation.
unique products, were detected after 48 h of irradiation. However,
partial conversion of quinone 1 and 2 (46% and 22%, respectively)
to their photoproducts were observed after ten days of irradiation.
Photoproducts 3 and 8 were isolated in 55% and 88% yields, respec-
tively. As in the solar experiments, the presence of catalytic
amounts of benzophenone did not improve the yields of the pho-
thoacylation reactions. Although the above experiments demon-
strate the feasibility of the photoacylation of quinones 1 and 2
with furan-2-carbaldehyde under artificial light, further experi-
ments should be carried out to improve the photoacylation conver-
sions and to know the scope of the reaction with heteroaldeydes.
In conclusion, we have described a facile, efficient, cheap and
high-yielding procedure to prepare heteroacylhydroquinones. The
reported method involves commercially available precursors and
an efficient solar photoacylation of 1,4-benzo- and 1,4-naphtho-
quinone. Our work demonstrates that the use of green photochem-
istry with sunlight is achievable for the acylation of 1,4-quinones
with heteroaromatic aldehydes. Further work is in progress to re-
place benzene by alternative solvents suitable for green chemistry.
Encouraged by this result, we set out to study the scope of this
photoacylation procedure for the synthesis of heteroacylhydroqui-
nones 4–14 and the results are collected in Table 1. In all the exam-
ined cases the heteroacylhydroquinones were obtained in good to
excellent yields. The structure of the new compounds 3–12 were
deduced from IR, 1H and 13C NMR data.
All solar experiments reported here33 were performed at the
Canchones Experimental Center in Iquique/Chile (latitude
20°26043.8000 S, 990 m above sea level), which is located in the
Atacama desert, one of the most insolate regions of the world.
In order to evaluate the photoacylation of quinones employing
an artificial irradiation source, the reactions of quinones 1 and 2
with furan-2-carbaldehyde were examined under the same
conditions employed in the solar experiments.33 Degassed reaction
mixtures were irradiated by means of 130-W UV-fluorescent
lamps and the progress of the reactions were monitored by TLC.
The presence of the corresponding photoproducts 3 and 8, as the
Acknowledgement
Table 1
We thank Fondo Nacional de Ciencia y Tecnología (Grant No.
1100376) for financial support to this study.
Solar photoacylation of 1,4-quinones with heteroaromatic carbaldehydes
Quinone
Aldehyde
Photoproduct
No
Rend.a (%)
O
OH O
O
O
References and notes
3
88
O
OH
OH O
1. Thompson, R. H. Naturally Occurring Quinones III, Recent Advances; Chapman
and Hall: London, 1987.
2. Maruyama, K.; Naruta, Y. Chem. Lett. 1977, 847–850.
O
O
1
3. Uno, H. J. Org. Chem. 1986, 51, 350–358.
4. Brimble, M. A.; Lynds, S. M. J. Chem. Soc., Perkin Trans. 1 1994, 493–496.
5. Kraus, G. A.; Maeda, H. Tetrahedron Lett. 1994, 35, 9189.
6. Waske, P. A.; Mattay, J.; Oelgemöller, M. Tetrahedron Lett. 2006, 47, 1329–1332.
7. Valderrama, J. A.; Pessoa-Mahana, D.; Tapia, R. A.; Rojas de Arias, A.; Nakayama,
H.; Torres, S.; Miret, J.; Ferreira, M. E. Tetrahedron 2001, 57, 8653–8658.
8. Valderrama, J. A.; Benites, J.; Cortés, M.; Pessoa-Mahana, D.; Prina, E.; Fournet,
A. Tetrahedron 2002, 58, 881–886.
9. Valderrama, J. A.; Zamorano, C.; González, M. F.; Prina, E.; Fournet, A. Bioorg.
Med. Chem. 2005, 13, 4153–4159.
10. Valderrama, J. A.; González, M. F.; Pessoa-Mahana, D.; Tapia, R. A.; Fillion, H.;
Pautet, F.; Rodríguez, J. A.; Theoduloz, C.; Schmeda-Hishmann, G. Bioorg. Med.
Chem. 2006, 14, 5003–5011.
11. Valderrama, J. A.; González, M. F.; Colonelli, P.; Vásquez, D. Synlett 2006, 2777–
2780.
12. Valderrama, J. A.; Vásquez, D. Tetrahedron Lett. 2008, 49, 703–706.
13. Vásquez, D.; Rodríguez, J. A.; Theoduloz, C.; Buc, P.; Valderrama, J. A. Eur. J. Med.
Chem. 2010, 45, 5234–5242.
14. Naeimi, H.; Moradi, L. Bull. Chem. Soc. Jpn. 2005, 78, 284–287.
15. Trost, B. M.; Saulnier, M. G. Tetrahedron Lett. 1985, 26, 123–126.
16. Crombie, L.; Jones, R. C. F.; Palmer, C. J. Tetrahedron Lett. 1985, 26, 2933–2936.
17. Dorofeenko, G. N.; Tkachenko,V. V. Khim. Geter. Soedin.. 1971, 7, 1703; Chem.
Abstr. 1971, 76, 153503k.
18. Satory, G.; Casnati, G.; Bigi, F. J. Org. Chem. 1990, 55, 4371–4377.
19. Boyer, J. L.; Krum, J. E.; Myers, M. C.; Fazal, A. N.; Wigal, C. T. J. Org. Chem. 2000,
65, 4712–4714.
20. (a) Klinger, H. Justus Liebigs Ann. Chem. 1888, 249, 137–146; (b) Klinger, H.;
Standke, O. Ber. Dtsch. Chem. Ges. 1891, 24, 1340–1346; (c) Klinger, H.;
Kolvenbach, W. Ber. Dtsch. Chem. Ges. 1898, 31, 1214–1216.
21. Bruce, J. M. In The Chemistry of the Quinoid Compounds; Patai, S., Ed.; John Wiley
and Sons: New York, 1974; Vol. 1, p 503.
22. Kraus, G. A.; Kirihara, M. J. Org. Chem. 1992, 57, 3256–3257.
23. Kraus, G. A.; Liu, P. Tetrahedron Lett. 1994, 35, 7723–7726.
24. Kobayashi, K.; Suzuki, M.; Takeuchi, H.; Konishi, A.; Sakurai, H.; Suginome, H. J.
Chem. Soc., Perkin Trans. 1 1994, 1099–1104.
25. Schiel, C.; Oelgemöller, M.; Ortner, J.; Mattay, J. Green Chem. 2001, 3, 224–228.
26. Oelgemöller, M.; Schiel, C.; Fröhlich, R.; Mattay, J. Eur. J. Org. Chem. 2002, 15,
2465–2474.
27. Oelgemöller, M.; Jung, C.; Ortner, J.; Mattay, J.; Schiel, C.; Zimmermann, E.
Spectrum 2005, 18, 28–33.
O
S
4
5
83
87
81
72
89
85
92
71
80
S
OH
OH O
O
O
O
S
S
O
O
OH
OH O
O
N
H
6
HN
OH
OH O
O
O
O
N
7
N
O
OH
O
OH O
O
O
8
O
O
O
OH
OH O
2
O
S
9
S
O
O
OH
OH O
O
S
10
11
12
S
O
O
OH
OH O
O
N
H
HN
28. Murphy, B.; Goodrich, P.; Christopher Hardacre, C.; Oelgemöller, M. Green
Chem. 2009, 11, 1867–1870.
O
O
OH
OH O
O
N
29. (a) Schenck, G. O.; Koltzenburg, G. Naturwissenschaften 1954, 41, 452; (b)
Schenck, G. O.; Koltzenburg, G. Angew. Chem. 1954, 66, 475; (c) Moore, R. F.;
Waters, W. A. J. Chem. Soc. 1953, 238–240; (d) Bruce, J. M.; Cutts, E. J. Chem. Soc.
C 1966, 449–458; (e) Bruce, J. M.; Creed, D.; Ellis, J. N. J. Chem. Soc. C 1967,
1486–1490; (f) Bruce, J. M.; Dawes, K. J. Chem. Soc. C 1970, 645–648; (g)
Maruyama, K.; Miyagi, Y. Bull. Chem. Soc. Jpn. 1974, 47, 1303–1304; (h)
N
O
OH
a
Isolated yield.