Chen et al.
JOCArticle
from terminal alkynes using silver tetrafluoroborate as the
catalyst.22 Here we developed a two-step approach for the
synthesis of 2,5-disubstituted 3-iodofurans involving the So-
nogashira cross-coupling of terminal alkynes and (Z)-β-ha-
loenol acetates, followed by iodocyclization. Although 2,5-
disubstituted 3-iodofurans have been obtained previously
from but-3-yn-1-ones13a or alk-3-yn-1,2-diols,13b readily ac-
cessible starting materials, the high efficiency and compat-
ibility made our strategies attractive for furan synthesis.
Moreover, it is noteworthy that the conjugated enyne acetate
intermediates will be prove to have broad application.23
TABLE 2. Study of the Solvent Effect on the Iodocyclization Reactiona
entry
solvent
Et2O
THF
MeCN
hexane
MeOH
MeOH/CH2Cl2
CH2Cl2
yield of 41b (%)
recovery of 2 (%)
1
2
3
4
5
6c
7
15
28
75
82
tr
76
67
18
14
92
0
50
94
Results and Discussion
0
aReaction conditions: 2 (0.25 mmol), I2 (1.5 equiv), and NaHCO3 (1.5
equiv) in 2 mL of solvent at rt for 8 h. bYields of 41 are given for isolated
products. c1 mL of MeOH and 1 mL of CH2Cl2.
A two-step method to 2,5-disubstituted 3-iodofurans
has been examined involving (i) the Sonogashira coupling
of (Z)-β-bromoenol acetates with terminal alkynes to afford
the conjugated enyne acetates and (ii) a iodocyclization
reaction.
To test the scope of this overall approach, we first studied
the Sonogashira reaction of (Z)-β-bromoenol acetates with
terminal alkynes. Treatment of (Z)-β-bromoenol acetates
bearing different functionalities with a wide range of term-
inal alkynes under standard Sonogashira coupling condi-
tions (0.5 mmol of (Z)-β-bromoenol acetate, 2.0 equiv of
terminal alkyne, 5 mol % of Pd(OAc)2, 10 mol % of PPh3,
5 mol % of CuI, 1 mmol of Et3N, and 2 mL of THF at 50 °C
for 6 h) affords high yields of the target products (eq 1, Table 1).
(12) (a) Zhang, M.; Jiang, H.-F.; Neumann, H.; Beller, M.; Dixneuf, P. H.
Angew. Chem., Int. Ed. 2009, 48, 1681. (b) Barluenga, J.; Riesgo, L.; Vicente,
ꢀ
ꢀ
R.; Lopez, L. A.; Tomas, M. J. Am. Chem. Soc. 2008, 130, 13528. (c) Xu, B.;
Hammond, G. B. J. Org. Chem. 2006, 71, 3518. (d) Xu, L.; Huang, X.;
Zhong, F. Org. Lett. 2006, 8, 5061. (e) Donohoe, T. J.; Fishlock, L. P.; Lacy,
A. R.; Procopiou, P. A. Org. Lett. 2007, 9, 953. (f) Liu, W.; Jiang, H.; Zhang,
M.; Qi, C. J. Org. Chem. 2010, 75, 966. (g) Li, H.; Hsung, R. P. Org. Lett.
2009, 11, 4462. (h) Sydnes, L. K.; Holmelid, B.; Sengee, M.; Hanstein, M.
J. Org. Chem. 2009, 74, 3430. (i) Yang, Y.-K.; Choi, J.-H.; Tae, J. J. Org.
Chem. 2005, 70, 6995.
(13) (a) Sniady, A.; Wheeler, K, A.; Dembinski, R. Org. Lett. 2005, 7,
1769. (b) Bew, S. P.; Knight, D. W. Chem. Commun. 1996, 1007. (c) Liu, Y.;
Zhou, S. Org. Lett. 2005, 7, 4609. (d) Yao, T.; Zhang, X.; Larock, R. C.
J. Org. Chem. 2005, 70, 7679. (e) Arimitsu, S.; Jacobsen, J. M.; Hammond,
G. B. J. Org. Chem. 2008, 73, 2886.
(14) (a) Crone, B.; Kirsch, S. F. J. Org. Chem. 2007, 72, 5435. (b) Just,
Z. W.; Larock, R. C. J. Org. Chem. 2008, 73, 2662.
(15) (a) Yue, D.; Yao, T.; Larock, R. C. J. Org. Chem. 2005, 70, 10292.
With the standard conditions in hand, the scope of both
(Z)-β-bromoenol acetates and terminal alkynes was explored
for the coupling reaction (Table 1). Initially, a variety of
terminal alkynes were investigated by reacting with (Z)-2-
bromo-1-phenylvinyl acetate (1) (entries 1-26). The results
showed that the aromatic alkynes with either an electron-
donating or electron-withdrawing group on the benzene ring
were able to generate the corresponding products in good to
excellent yields (entries 1-14). Substitution at the ortho
position of the aromatic ring had some impact on the yields
(entries 2-4, 11, and 12). It is noteworthy that ethynylferro-
cene and the 3-ethynylbenzenamine also afford the corre-
sponding coupling products in good yields (entries 8 and 9).
It should be pointed out that the carbon-halogen bonds
tolerated the substrate reactivity and the halogen-containing
products were afforded smoothly (entries 12 and 13). The
alkyl alkynes were also found to be suitable substrates for the
standard conditions (entries 15-26). When the aliphatic
alkynes bearing chloro, cyano, silyl, benzylic, cyclopropyl,
cyclohexyl, vinylic, and hydroxyl groups were employed, the
reaction proceeded in good to excellent yields. Subsequently,
some representative (Z)-β-bromoenol acetates were exam-
ined, and high yields were obtained in almost all case,
regardless of the nature of terminal alkynes (entries 27-36).
The starting conjugated enyne acetates were readily avail-
able through the Sonogashira coupling reaction, and we then
focused on the development of an optimum conditions of the
iodocyclization (Table 2). The reaction of (Z)-1,4-diphenyl-
but-1-en-3-ynyl acetate (2) with iodine and NaHCO3 was
chosen as a model system for this process. The reaction
showed a strong solvent dependence. Good yields were
~
(b) Manarin, F.; Roehrs, J. A.; Gay, R. M.; Brandao, R.; Menezes, P. H.;
Nogueira, C. W.; Zeni, G. J. Org. Chem. 2009, 74, 2153. (c) Okitsu, T.;
Nakazawa, D.; Taniguchi, R.; Wada, A. Org. Lett. 2008, 10, 4967. (d) Cho,
C.-H.; Neuenswander, B.; Lushington, G. H.; Larock, R. C. J. Comb. Chem.
2008, 10, 941.
ꢀ
(16) (a) Barluenga, J.; Trincado, M.; Rubio, E.; Gonzalez, J. M. Angew.
Chem., Int. Ed. 2003, 42, 2406. (b) Yue, D.; Larock, R. C. Org. Lett. 2004, 6,
1037. (c) Yue, D.; Yao, T.; Larock, R. C. J. Org. Chem. 2006, 71, 62.
(17) (a) Yue, D.; Larock, R. C. J. Org. Chem. 2002, 67, 1905. (b) Flynn,
B. L.; Verdier-Pinard, P.; Hamel, E. Org. Lett. 2001, 3, 651.
(18) (a) Kesharwani, T.; Worlikar, S. A.; Larock, R. C. J. Org. Chem.
2006, 71, 2307. (b) Alves, D.; Luchese, C.; Nogueira, C. W.; Zeni, G. J. Org.
Chem. 2007, 72, 6726.
(19) (a) Zhang, X.; Campo, M. A.; Yao, T.; Larock, R. C. Org. Lett. 2005,
7, 763. (b) Huang, Q.; Hunter, J. A.; Larock, R. C. Org. Lett. 2001, 3, 2973.
(c) Huang, Q.; Hunter, J. A.; Larock, R. C. J. Org. Chem. 2002, 67, 3437.
(20) (a) Waldo, J. P.; Larock, R. C. J. Org. Chem. 2007, 72, 9643.
(b) Waldo, J. P.; Larock, R. C. Org. Lett. 2005, 7, 5203.
(21) For recent selected examples, see: (a) Barluenga, J.; Trincado, M.;
ꢀ
Marco-Arias, M.; Ballesteros, A.; Rubio, E.; Gonzalez, J. M. Chem. Com-
mun. 2005, 2008. (b) Barluenga, J.; Vazquez-Villa, H.; Ballesteros, A.;
ꢀ
ꢀ
ꢁ
Gonzalez, J. M. J. Am. Chem. Soc. 2003, 125, 9028. (c) Yue, D.; Ca, N. D.;
Larock, R. C. Org. Lett. 2004, 6, 1581. (d) Arcadi, A.; Cacchi, S.; Giuseppe,
S. D.; Fabrizi, G.; Marinelli, F. Org. Lett. 2002, 4, 2409. (e) Peng, A.-Y.;
Ding, Y.-X. Org. Lett. 2004, 6, 1119. (f) Yao, T.; Larock, R. C. J. Org. Chem.
2003, 68, 5936. (g) Yao, T.; Larock, R. C. J. Org. Chem. 2005, 70, 1432.
(h) Zhang, X.; Sarkar, S.; Larock, R. C. J. Org. Chem. 2006, 71, 236. (i)
Worlikar, S. A.; Kesharwani, T.; Yao, T.; Larock, R. C. J. Org. Chem. 2007,
72, 1347. (j) Zhou, C.; Dubrovsky, A. V.; Larock, R. C. J. Org. Chem. 2006,
71, 1626.
(22) Chen, Z.; Li, J.; Jiang, H.; Zhu, S.; Li, Y.; Qi, C. Org. Lett. 2010, 12,
3262.
(23) For selective examples of enyne derivatives, see: (a) Li, Y.; Liu, X.;
Jiang, H.; Feng, Z. Angew. Chem., Int. Ed. 2010, 49, 3338. (b) Nakao, Y.;
Hirata, Y.; Tanaka, M.; Hiyama, T. Angew. Chem., Int. Ed. 2008, 47, 385.
(c) Shirakawa, E.; Yoshida, H.; Kurahashi, T.; Nakao, Y.; Hiyama, T. J. Am.
Chem. Soc. 1998, 120, 2975. (d) Suginome, M.; Shirakura, M.; Yamamoto,
A. J. Am. Chem. Soc. 2006, 128, 14438. (e) Liu, Y.; Zhong, Z.; Nakajima, K;
Takahashi, T. J. Org. Chem. 2002, 67, 7451. (f) Yoshida, H.; Shirakawa, E.;
Kurahashi, T.; Nakao, Y.; Hiyama, T. Organometallics 2000, 19, 5671.
1136 J. Org. Chem. Vol. 76, No. 4, 2011