Scheme 1. Rationally Designed New Class of Chiral Secondary
Amine Organocatalyst 4 with a Chiral Pocket
Figure 1. Typical chiral secondary amine organocatalysts 1-3.
proline,2 chemists have also rationally designed several
other impressive chiral secondary amines as organocatalysts.
Representative examples are MacMillan’s imidazolidi-
nones catalyst 1,3 Hayashi and Jørgensen’s R,R-diarylpro-
linol ether catalyst 24 and Maruoka’s binaphthyl-based
chiral secondary amine catalyst 3,5 which were found to
induce high enantioselectivities in a large number of reac-
tions that proline failed (Figure 1). Despite these significant
progresses, there are still many limitations such as high
catalytic loading, low temperature, low enantioselectivity
and reactivity in many other reactions which could not be
resolved using existing organocatalysts. Therefore, there is
a tremendous amount of effort directed at the design of
more efficient organocatalysts.1 Toward solving some of
these limitations, we rationally designed a new class of
Scheme 2. Synthesis of Chiral Organocatalyst 4
(3) (a) Beeson, T. D.; Mastracchio, A.; Hong, J.-B.; Ashton, K.;
MacMillan, D. W. C. Science 2007, 316, 582. (b) Jang, H.-Y.; Hong, J.-
B.; MacMillan, D.W. C. J. Am. Chem. Soc. 2007, 129, 7004. (c) Kim, H.;
MacMillan, D.W. C. J. Am. Chem. Soc. 2008, 130, 398. (d) Lelais, G.;
MacMillan, D. W. C. Aldrichim. Acta 2006, 39, 79.
chiral secondary amine 4 (Scheme 1) based on the naturally
occurring hexahydropyrrolo[2,3-b]indole skeleton,6 which
has been identified as a new privileged chiral skeleton for
asymmetric catalysis in our group.7 In our new design of 4,
in addition to the intrinsic chiral pocket brought about by
the conformation of the tricyclic skeleton, the ethyl carba-
mate group serves to control the conformation of the
enamine while the bulky naphthyl group efficiently shields
the top face of the pocket. It is anticipated that the unique
rigid tricyclic structure, together with the inherent hydro-
phobic pocket, will bestow upon catalyst 4 more promising
and superior properties as compared to other chiral sec-
ondary amine catalysts. In this paper, we report a new class
of organocatalyst 4 with high potential as demonstrated in
the highly enantioselective organocatalytic Michael reac-
tion of aldehydes to vinyl sulfones.
Catalyst 4 could be easily prepared in four steps from 5
as shown in Scheme 2. DCC coupling of 5 with 1-naphthol
furnished 6, which was treated with TFA to afford an endo
and exo mixture of 7. Reaction of 7 with ethyl chlorofor-
mate in the presence of sodium carbonate, followed by
hydrogenation, gave the desired catalyst 4 in good yield.
The unique structure and stereochemistry of 4 has been
unambiguously confirmed by X-ray crystallography.
X-ray crystallographic analysis indicates that there is a
face tilted-T orientation of the naphthyl and phenyl rings
(4) For reviews, see: (a) Palomo, C.; Mielgo, A. Angew. Chem., Int.
Ed. 2006, 45, 7876. (b) Mielgo, A.; Palomo, C. Chem. Asian J. 2008, 3,
922. For the pioneering work, see: (c) Hayashi, Y.; Gotoh, H.; Hayashi,
T.; Shoji, M. Angew. Chem., Int. Ed. 2005, 44, 4212. (d) Marigo, M.;
Wabnitz, T. C.; Fielenbach, D.; Jørgensen, K. A. Angew. Chem., Int. Ed.
2005, 44, 794. (e) Marigo, M.; Fielenbach, D.; Braunton, A.; Kjasgaard,
ꢀ
A.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2005, 44, 3703. (f) Franzen,
J.; Marigo, M.; Fielenbach, D.; Wabnitz, T. C.; Kjærsgaard, A.;
Jørgensen, A. K. J. Am. Chem. Soc. 2005, 127, 18296.
(5) For reviews, see: (a) Maruoka, K. Bull. Chem. Soc. Jpn. 2009, 82,
917. (b) Kano, T.; Maruoka, K. Chem. Commun. 2008, 5465. For
selected examples, see: (c) Kano, T.; Takai, J.; Tokuda, O.; Maruoka, K.
Angew. Chem., Int. Ed. 2005, 44, 3055. (d) Kano, T.; Tokuda, O.; Takai,
J.; Maruoka, K. Chem. Asian J. 2006, 1, 210. (e) Kano, T.; Yamaguchi,
Y.; Maruoka, K. Angew. Chem., Int. Ed. 2007, 46, 1738. (f) Kano, T.;
Yamaguchi, Y.; Tokuda, O.; Maruoka, K. J. Am. Chem. Soc. 2005, 127,
16408. (g) Kano, T.; Yamaguchi, Y.; Maruoka, K. Angew. Chem., Int.
Ed. 2009, 48, 1838.
(6) For reviews of natural products containing hexahydropyrrolo
[2,3-b]indole, see: (a) Crich, D.; Banerjee, A. Acc. Chem. Res. 2007, 40,
151. (b) Ruiz-Sanchis, P.; Savina, S. A.; Albericio, F.; Alvarez, M.
ꢀ
Chem.-Eur. J. 2011, DOI: 10.1002/chem.201001451. For cinchona alkaloids-
derived catalysts, see: (c) Tian, S. K.; Chen, Y.; Hang, J.; Tang, L.; McDaid,
ꢀ
P.; Deng, L. Acc. Chem. Res. 2004, 37, 621. (d) Kacprzak, K.; Gawronski,
J. Synthesis 2001, 961. For the pioneering work using natural product
nornicotine as a catalyst, see: (e) Dickerson, T. J.; Janda, K. D. J. Am.
Chem. Soc. 2002, 124, 3220. (f) Brogan, A. P.; Dickerson, T. J.; Janda, K.
D. Chem. Commun. 2007, 4952. (g) Rogers, C. J.; Dickerson, T. J.;
Brogan, A. P.; Janda, K. D. J. Org. Chem. 2005, 70, 3705. (h) Dickerson,
T. J.; Lovell, T.; Meijler, M. M.; Noodleman, L.; Janda, K. D. J. Org.
Chem. 2004, 69, 6603. (i) Rogers, C. J.; Dickerson, T. J.; Janda, K. D.
Tetrahedron 2006, 62, 352.
(7) (a) Xiao, J.; Xu, F. X.; Lu, Y. P.; Loh, T. P. Org. Lett. 2010, 12,
1220. (b) Xiao, J.; Wong, Z. Z.; Lu, Y. P.; Loh, T. P. Adv. Synth. Catal.
2010, 352, 1107. (c) Xiao, J.; Liu, Y. L.; Loh, T. P. Synlett 2010, 2029. (d)
Xiao, J.; Loh, T. P. Org. Lett. 2009, 11, 2876. (e) Xiao, J.; Loh, T. P.
Synlett 2007, 815. (f) Xiao, J.; Loh, T. P. Tetrahedron Lett. 2008, 49,
7184. For a discussion of “privileged” chiral catalyst, see: (g) Yoon,
T. P.; Jacobsen, E. N. Science 2003, 299, 1691.
˚
with Ha lying 2.77 A perpendicularly under the face of the
phenyl ring with an inter-ring angle of 77° (Figure 2). This
Org. Lett., Vol. 13, No. 5, 2011
877