Inorganic Chemistry
COMMUNICATION
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: sssun@chem.sinica.edu.tw.
Figure 3. Proposed mechanism for HgII sensing by probe Pt3.
’ ACKNOWLEDGMENT
into a DMF-d7 solution of Pt1 or Pt2 resulted in a similar upfield
shift of the proton signals associated with the terpyridine moiety
(Figures S10 and S11 in the SI). Apparently, the Hg2þ ion
interacted with the platinum terpyridyl moiety first, followed by
encapsulation of Hg2þ to the dithiaazacrown moiety. Although
attempts to grow good quality single crystals of a Hg2þ-Pt3
We thank the National Science Council of Taiwan and
Academia Sinica for support of this research.
’ REFERENCES
(1) Czarnik, A. W. Fluorescent Chemosensors for Ion and Molecule
Recognition; American Chemical Society: Washington, DC, 1993.
(2) Boening, D. W. Chemosphere 2000, 40, 1335.
(3) Harris, H. H.; Pickering, I. J.; George, G. N. Science 2004, 303,
764.
1
adduct were not successful, the results from H NMR titration
hint at a possible PtII-HgII interaction. In addition, a peak cluster
at m/z 1657.7 corresponding to a formula of [2(Pt3 - Cl)þ þ
4Hg2þ þ 7ClO4 þ Cl-]2þ (calculated m/z1657.9) was observed
-
(4) (a) Nolan, E. M.; Lippard, S. J. Chem. Rev. 2008, 108, 3443 and
references cited therein. (b) Ho, M.-L.; Chen, K.-Y.; Lee, G.-H.; Chen,
Y.-C.; Wang, C.-C.; Lee, J.-F.; Chung, W.-C.; Chou, P.-T. Inorg. Chem.
2009, 48, 10304. (c) Singh, A. S.; Chen, B.-Y.; Wen, Y.-S.; Tsai, C.; Sun,
S.-S. Org. Lett. 2009, 11, 1867.
(5) (a) Yoon, S.; Albers, A. E.; Wong, A. P.; Chang, C. J. J. Am. Chem.
Soc. 2005, 127, 16030. (b) Yoon, S.; Miller, E. W.; He, Q.; Do, P. H.;
Chang, C. J. J. Angew. Chem., Int. Ed. 2007, 46, 6658. (c) Li, M.-J.; Chu,
B. W.-K.; Zhu, N.; Yam, V. W.-W. Inorg. Chem. 2007, 46, 720.
(6) (a) Wong, K. M.-C.; Yam, V. W.-W. Coord. Chem. Rev. 2007, 251,
2477. (b) Yam, V. W.-W.; Chan, K. H.-Y.; Wong, K. M.-C.; Chu,
B. W.-K. Angew. Chem., Int. Ed. 2006, 45, 6169. (c) Wong, K. M. -C.;
Tang, W.-S.; Lu, X.-X.; Zhu, N.; Yam, V. W.-W. Inorg. Chem. 2005, 44,
1492. (d) Han, X.; Wu, L.-Z.; Si, G.; Pan, J.; Yang, Q.-Z.; Zhang, L.-P.;
Tung, C.-H. Chem.—Eur. J. 2007, 13, 1231.
(7) (a) Schmittel, M.; Lin, H.-W. Angew. Chem., Int. Ed. 2007, 46,
893. (b) Schwarze, T.; Muller, H.; Dosche, C.; Klamroth, T.; Mickler,
W.; Kelling, A.; Lohmannsroben, H.-G.; Saalfrank, P.; Holdt, H.-J.
Angew. Chem., Int. Ed. 2007, 46, 1671.
(8) Wadsworth, W. S.; Emmons, W. D. J. Am. Chem. Soc. 1961, 83,
1733.
(9) (a) Moore, J. J.; Nash, J. J.; Fanwick, P. E.; McMillin, D. R. Inorg.
Chem. 2002, 41, 6387. (b) Sakuda, E.; Funahashi, A.; Kitamura, N. Inorg.
Chem. 2006, 45, 10670.
(10) Pyykk€o, P.; Straka, M. Phys. Chem. Chem. Phys. 2000, 2, 2489.
(11) Burini, A.; Fackler, J. P., Jr.; Galassi, R.; Grant, T. A.; Omary,
M. A.; Rawashdeh-Omary, M. A.; Pietroni, B. R.; Staples, R. J. J. Am.
Chem. Soc. 2000, 122, 11264.
in the electrospray ionization mass spectrum (Figure S12 in the SI).
Recent studies have suggested that the dispersive forces
responsible for the formation of metallophilic interactions between
closed-shell atoms would be magnified by relativistic effects,
especially when these interactions involve a Hg2þ ion.10 Exam-
ples of metallophilic interactions of HgII AuI,11 HgII PtII,12
3 3 3
3 3 3
and HgII PdII 13 bonds have been well documented. 195Pt
3 3 3
NMR spectra of Pt3 and Pt3 upon the addition of 1 equiv of
Hg2þ were separately recorded. Although the low solubility of Pt3 in
DMF-d7 precluded the observation of 199Hg satellites, the 10 ppm
upfield shift of the 195Pt signal of Pt3 in the presence of 1 equiv of
Hg2þ indicates the existence of a weak metallophilic interaction
between Pt2þ and Hg2þ (Figures S13 and S14 in the SI). Thus, we
tentatively suggest that the initial interaction of Pt3 and the incoming
Hg2þ involves the formation of a weak PtII HgII metallophilic
3 3 3
interaction, followed by HgII-dithiaazacrown interaction.
Beyond the relativistic effect, the strong ICT effect from di-
thiaazacrown to terpyridine may reinforce the possible donor
(Pt2þ) to acceptor (Hg2þ) interaction. The mechanism of optical
response of Pt3 upon the addition of Hg2þ is summarized in
Figure 3. It is expected to observe a minor enhancement of the
ICT transition upon formation of the PtII HgII interaction at
3 3 3
low Hg2þ concentration. Indeed, both Pt2 and Pt3 exhibited such
an enhancement in the absorption spectra with the initial addi-
tion of a Hg2þ ion. Upon the addition of more than 1 equiv of Hg2þ
,
encapsulation of Hg2þ to the dithiaazacrown moiety occurred,
which shuts down ICT absorption and turns on the optical output
from MLCT absorption. The binding constants based on the two-
step equilibrium shown in Figure 3 were calculated to be 1.33 ꢀ 104
M-1 (K1) and 1.64 ꢀ 103 M-1 (K2), and the detection limit for
HgII is estimated to be on the order of micromolar concentration.
In conclusion, we have designed a simple yet highly selective
optical probe for Hg2þ. The optical output can be modulated by
switching off the ICT transition upon Hg2þ binding and con-
verted to a colorimetric response from MLCT transition. The
(12) (a) Jꢀoszai, R.; Beszeda, I.; Bꢀenyei, A. C.; Fischer, A.; Kovꢀacs, M.;
Maliarik, M.; Nagy, P.; Shchukarev, A.; Tꢀoth, I. Inorg. Chem. 2005, 44,
9643. (b) Falvello, L. R.; Forniꢀes, J.; Martin, A.; Navarro, R.; Sicilia, V.;
Villarroya, P. Inorg. Chem. 1997, 36, 6166. (c) Patel, U.; Sharma, S.;
Singh, H. B.; Dey, S.; Jain, V. K.; Wolmersh€auser, G.; Butcher, R. J.
Organometallics 2010, 29, 4265.
(13) (a) Sharma, S.; Baligar, R. S.; Singh, H. B.; Butcher, R. J. Angew.
Chem., Int. Ed. 2009, 48, 1987. (b) Kim, M.; Taylor, T. J.; Gabbaï, F. P.
J. Am. Chem. Soc. 2008, 130, 6332.
possible dispersive PtII HgII interaction is proposed to ratio-
3 3 3
nalize the observed unusual spectral properties at low concentra-
tions of Hg2þ in solution. This result may contribute not only to
the design of new HgII probes but also to the development of the
model system to explore the metallophilic interactions.
’ ASSOCIATED CONTENT
S
Supporting Information. Synthetic procedures, charac-
b
terization data, and titration spectra. This material is available free
2713
dx.doi.org/10.1021/ic101908p |Inorg. Chem. 2011, 50, 2711–2713