B. Alcaide et al. / Tetrahedron 68 (2012) 10748e10760
10759
66.2, 60.1, 31.7, 20.6. IR (CHCl3) n
2225, 1745, 1190, 1042 cmꢁ1. HRMS
In; Banik, B. K., Ed. Topics in Heterocyclic Chemistry; Springer: Berlin-Heidel-
berg, 2010; Vol. 22, p 349.
4. It has been reported that b-lactams act to modulate the expression of gluta-
(ESI): calcd for [C17H17NO4þH]þ 300.1236, found 300.1230.
mate neurotransmitter transporters via gene activation. See: Rothstein, J. D.;
Patel, S.; Regan, M. R.; Haenggeli, C.; Huang, Y. H.; Bergles, D. E.; Jin, L.; Hoberg,
M. D.; Vidensky, S.; Chung, D. S.; Toan, S. V.; Bruijn, L. I.; Su, Z.-z.; Gupta, P.;
Fisher, P. B. Nature 2005, 433, 73.
5.12. Procedure for the metal/acid co-catalyzed cyclization of
alkynyldioxolane (D)-4b using D2O instead of H2O.
Preparation of fused acetal (D)-[D]-12a
5. For selected reviews on the synthetic utility of b-lactams, see: (a) Alcaide, B.;
Almendros, P. Chem. Rec. 2011, 11, doi:10.1002/tcr.201100011; (b) Alcaide, B;
Almendros, P.; Aragoncillo, C. Chem. Rev. 2007, 107, 4437; (c) Alcaide, B.; Al-
mendros, P. Curr. Med. Chem. 2004, 11, 1921; (d) Deshmukh, A. R. A. S.; Bhawal,
B. M.; Krishnaswamy, D.; Govande, V. V.; Shinkre, B. A.; Jayanthi, A. Curr. Med.
Chem. 2004, 11, 1889; (e) Alcaide, B.; Almendros, P. Synlett 2002, 381; (f) Pal-
omo, C.; Aizpurua, J. M.; Ganboa, I.; Oiarbide, M. Synlett 2001, 1813; (g) Alcaide,
B.; Almendros, P. Chem. Soc. Rev. 2001, 30, 226; (h) Alcaide, B.; Almendros, P.
Org. Prep. Proced. Int. 2001, 33, 315; (i) Ojima, I.; Delaloge, F. Chem. Soc. Rev. 1997,
26, 377; (j) Manhas, M. S.; Wagle, D. R.; Chiang, J.; Bose, A. K. Heterocycles 1988,
27, 1755.
6. (a) Milroy, L. G.; Zinzalla, G.; Prencipe, G.; Michel, P.; Ley, S. V.; Gunaratnam, M.;
Beltran, M.; Neidle, S. Angew. Chem., Int. Ed. 2007, 46, 2493; (b) Maimone, T. J.;
Baran, P. S. Nat. Chem. Biol. 2007, 3, 396; (c) Matsuzawa, M.; Kakeya, H.;
Yamaguchi, J.; Shoji, M.; Onose, R.; Osada, H.; Hayashi, Y. Chem.dAsian J. 2006,
1, 845; (d) Evans, D. A.; Rajapakse, H. A.; Chiu, A.; Stenkamp, D. Angew. Chem.,
Int. Ed. 2002, 41, 4573; (e) Araki, K.; Suenaga, K.; Sengoku, T.; Uemura, D. Tet-
rahedron 2002, 58, 1983; (f) Mitchell, S. S.; Rhodes, D.; Bushman, F. D.; Faulkner,
D. J. Org. Lett. 2000, 2, 1605; (g) Uemura, D.; Chou, T.; Haino, T.; Nagatsu, A.;
Fukuzawa, S.; Zheng, S.; Chen, H. J. Am. Chem. Soc. 1995, 117, 1155; (h) Wood, D.
L.; Browne, L. E.; Ewing, B.; Lindahl, K.; Bedard, W. D.; Tilden, P. E.; Mori, K.;
Pitman, G. B.; Hughes, P. R. Science 1976, 192, 896; (i) Ellory, J. C.; Tucker, E. M.
Nature 1969, 222, 477.
[AuClPPh3] (0.0063 mmol), AgOTf (0.0063 mmol), p-toluene-
sulfonic acid, and deuterium oxide (0.50 mmol) were sequentially
added to a stirred solution of the alkynyldioxolane (þ)-4b (78 mg,
0.25 mmol) in dichloromethane (0.25 mL). The resulting mixture
was heated in a sealed tube at 80 ꢀC for 3 h. The reaction was
allowed to cool to room temperature and filtered through a pack of
Celite. The filtrate was extracted with ethyl acetate (3ꢂ5 mL), and
the combined extracts were washed twice with brine. The organic
layer was dried (MgSO4) and concentrated under reduced pressure.
Chromatography of the residue eluting with hexanes/ethyl acetate
(1:2) gave 51 mg (65%) of analytically pure adduct (D)-[D]-12a; as
a colorless solid. Mp 160e162 ꢀC. [
(300 MHz, CDCl3, 25 ꢀC)
a
]
þ7.9 (c 0.9, CHCl3). 1H NMR
D
d
7.57 (m, 2H), 7.32 (m, 3H), 4.67 (d,
J¼4.9 Hz, 1H), 4.57 (d, J¼4.7 Hz, 1H), 3.87 (ddd, J¼14.4, 5.4, 1.5 Hz,
1H), 3.79 (d, J¼4.6 Hz, 1H), 3.63 (s, 3H), 4.05 (m, 2H), 3.87 and 3.10
(d, J¼14.4 Hz, each 1H), 3.80 (d, J¼4.7 Hz, 1H), 3.64 (s, 3H). 13C NMR
7. (a) Acetylene Chemistry: Chemistry, Biology and Materials Science; Diederich, F.,
Stang, P. J., Tykwinski, R. R., Eds.; Wiley-VCH: Weinheim, 2005; (b) Bohlmann,
F.; Burkhart, F. T.; Zero, C. In Naturally Occurring Acetylenes; Academic: London
and New York, NY, 1973.
(75 MHz, CDCl3, 25 ꢀC)
d 167.7, 142.0, 127.7, 127.6, 124.3, 111.2, 83.0,
71.8, 70.8, 62.5, 58.8, 36.0 (m). IR (CHCl3)
n .
1749, 1190, 1045 cmꢁ1
HRMS (ESI): calcd for [C15H15D2NO4þNa]þ 300.1181, found
8. For reviews on the construction of heterocycles by alkyne p-activation, see: (a)
300.1175.
Rudolph, M.; Hashmi, A. S. K. Chem. Commun. 2011, 47, 6536; (b) Krause, N.;
Winter, C. Chem. Rev. 2011, 111, 1994; (c) Alcaide, B.; Almendros, P.; Alonso, J. M.
Org. Biomol. Chem. 2011, 9, 4405; (d) Aubert, C.; Fensterbank, L.; Garcia, P.;
Malacria, M.; Simonneau, A. Chem. Rev. 2011, 111, 1954; (e) Corma, A.; Leyva-
Acknowledgements
ꢀ
Perez, A.; Sabater, M. J. Chem. Rev. 2011, 111, 1657; (f) Alcaide, B.; Almendros, P.;
Alonso, J. M. Molecules 2011, 16, 7815; (g) Hashmi, A. S. K.; Buehrle, M. Al-
drichimica Acta 2010, 43, 27; (h) Yamamoto, Y.; Gridnev, I. D.; Patil, N. T.; Jin, T.
Chem. Commun. 2009, 5075; (i) Kirsch, S. F. Synthesis 2008, 3183; (j) Patil, N. T.;
Yamamoto, Y. Chem. Rev. 2008, 108, 3395; (k) Furstner, A.; Davies, P. W. Angew.
Chem., Int. Ed. 2007, 46, 3410; (l) Hashmi, A. S. K.; Hutchings, G. J. Angew. Chem.,
Int. Ed. 2006, 45, 7896.
Support for this work by the DGI-MICINN (Projects CTQ2009-
ꢀ
09318 and CTQ2007-63266), Comunidad Autonoma de Madrid
(Project S2009/PPQ-1752) and SANTANDER-UCM (Project GR35/10)
are gratefully acknowledged. R.C. thanks the MEC for a predoctoral
grant.
€
9. For selected examples, see: (a) Wang, T.; Zhang, J. Chem.dEur. J. 2011, 17, 86; (b)
Dzudza, A.; Marks, T. J. Chem.dEur. J. 2010, 16, 5148; (c) We, L.; Cui, L.; Zhang,
G.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 3258; (d) Belot, S.; Quintard, A.; Krause,
N.; Alexakis, A. Adv. Synth. Catal. 2010, 352, 667; (e) Weyrauch, J. P.; Hashmi, A.
S. K.; Schuster, A.; Hengst, T.; Schetter, S.; Littmann, A.; Rudolph, M.; Hamzic,
M.; Visus, J.; Rominger, F.; Frey, W.; Bats, J. W. Chem.dEur. J. 2010, 16, 956; (f)
Supplementary data
Schemes S1eS4, Figures S1eS3, Table S1 and Table S2, ORTEP
plot for compound 12a, computational data, as well as copies of the
1H NMR and 13C NMR spectra for all new compounds. Supple-
mentary data related to this article can be found online at
ꢀ
Aleman, J.; del Solar, V.; Navarro-Ranninger, C. Chem. Commun. 2010, 46, 454;
(g) Wang, Y.; Xu, L.; Ma, D. Chem.dAsian J. 2010, 5, 74; (h) Wilckens, K.; Uh-
lemann, M.; Czekelius, C. Chem.dEur. J. 2009, 15, 13323; (i) Hashmi, A. S. K.;
Schuster, A. M.; Rominger, F. Angew. Chem., Int. Ed. 2009, 48, 8247; (j) Barluenga,
ꢀ
ꢀ
~
ꢀ
J.; Fernandez, A.; Dieguez, A.; Rodríguez, F.; Fananas, F. J. Chem.dEur. J. 2009, 15,
11660; (k) Chung, Y. K.; Fu, G. C. Angew. Chem., Int. Ed. 2009, 48, 2225; (l)
Belting, V.; Krause, N. Org. Biomol. Chem. 2009, 7, 1221; (m) Barluenga, J.;
~
ꢀ
Mendoza, A.; Rodríguez, F.; Fananas, F. J. Angew. Chem., Int. Ed. 2009, 48, 1644;
(n) Meng, J.; Zhao, Y.-L.; Ren, C.-Q.; Li, Y.; Li, Z.; Liu, Q. Chem.dEur. J. 2009, 15,
1830; (o) Aponik, A.; Li, C.-Y.; Palmes, J. A. Org. Lett. 2009, 11, 121; (p) Schuler,
M.; Silva, F.; Bobbio, C.; Tessier, A.; Gouverneur, V. Angew. Chem., Int. Ed. 2008,
47, 7927; (q) Barluenga, J.; Mendoza, A.; Rodríguez, F.; Fananas, F. J. Chem.dEur.
J. 2008, 14, 10892; (r) Dai, L.-Z.; Shi, M. Chem.dEur. J. 2008, 14, 7011; (s) Ramana,
C. V.; Mallik, R.; Gonnade, R. G. Tetrahedron 2008, 64, 219; (t) Bae, H. J.; Baskar,
B.; An, S. E.; Cheong, J. Y.; Thangadurai, D. T.; Hwang, I.-C.; Rhee, Y. H. Angew.
Chem., Int. Ed. 2008, 47, 2263; (u) Arimitsu, S.; Hammond, G. B. J. Org. Chem.
2007, 72, 8559.
References and notes
1. See, for example: (a) Payne, D. J. Science 2008, 321, 1644; (b) Spencer, J.; Walsh,
T. Angew. Chem., Int. Ed. 2006, 45, 1022; (c) Fisher, J. F.; Meroueh, S. O.; Mo-
bashery, S. Chem. Rev. 2005, 105, 395; (d) Niccolai, D.; Tarsi, L.; Thomas, R. J.
Chem. Commun. 1997, 2333; (e) Southgate, R. Contemp. Org. Synth. 1994, 1, 417;
(f) Southgate, R.; Branch, C.; Coulton, S.; Hunt, E. In; Lukacs, G., Ed. Recent
Progress in the Chemical Synthesis of Antibiotics and Related Microbial Products;
Springer: Berlin, 1993; Vol. 2, p 621; (g) The Chemistry of b-Lactams; Page, M. I.,
Ed.; Chapman and Hall: London, 1992; (h) Morin, R. B., Gorman, M., Eds. ; Ac-
ademic: New York, NY, 1982; Vols. 1e3.
2. Some of the more notable advances concern the development of mechanism-
based serine protease inhibitors of elastase, cytomegalovirus protease,
thrombin, prostate specific antigen, and cell metastasis and as inhibitors of
acyl-CoA cholesterol acyl transferase. For a review, see: (a) Veinberg, G.; Vor-
ona, M.; Shestakova, I.; Kanepe, I.; Lukevics, E. Curr. Med. Chem. 2003, 10, 1741
For recent selected examples, see: (b) Mulchande, J.; Oliveira, R.; Carrasco, M.;
Gouveia, L.; Guedes, R. C.; Iley, J.; Moreira, R. J. Med. Chem. 2010, 53, 241; (c)
Hogan, P. C.; Corey, E. J. J. Am. Chem. Soc. 2005, 127, 15386; (d) Clader, J. W. J.
Med. Chem. 2004, 47, 1; (e) Kvaerno, L.; Ritter, T.; Werder, M.; Hauser, H.; Car-
reira, E. M. Angew. Chem., Int. Ed. 2004, 43, 4653; (f) Burnett, D. A. Curr. Med.
Chem. 2004, 11, 1873 For potential neurotherapeutic use for treating neuro-
logical diseases, see:.
~
ꢀ
10. For the gold-catalyzed access to bicyclic ketalsˇ from terminal alkyne diols, see:
(a) Antoniotti, S.; Genin, E.; Michelet, V.; Genet, J.-P. J. Am. Chem. Soc. 2005, 127,
ꢀ
9976 For the platinum-catalyzed synthesis of bicyclic ketals, see: (b) Dieguez-
ꢀ
Vazquez, A.; Tzschucke, C. C.; Lam, W. Y.; Ley, S. V. Angew. Chem., Int. Ed. 2008,
47, 209 For the gold-catalyzed access to tricyclic cage-like ketals from diyne-
€
€
diols and external nucleophiles, see: (c) Hashmi, A. S. K.; Buhrle, M.; Wolfle,
M.; Rudolph, M.; Wieteck, M.; Rominger, F.; Frey, W. Chem.dEur. J. 2010, 16,
9846 For the gold-catalyzed access to monocyclic ketals from alkynes and diols,
ꢀ
see: (d) Corma, A.; Ruiz, V. R.; Leyva-Perez, A.; Sabater, M. J. Adv. Synth. Catal.
2010, 352, 1701 For the iridium-catalyzed access to bicyclic ketals from alkyne
diols, see: (e) Benedetti, E.; Simonneau, A.; Hours, A.; Amouri, H.; Penoni, A.;
Palmisano, G.; Malacria, M.; Goddard, J.-P.; Fensterbank, L. Adv. Synth. Catal.
2011, 353, 1908.
11. See, for instance: (a) Alcaide, B.; Almendros, P.; Carrascosa, R. Chem.dEur. J.
3. For potential use as anticancer chemotherapeutic drugs, see: (a) Miller, T. M.;
Cleveland, D. W. Science 2005, 307, 361; (b) Kuhn, D.; Coates, C.; Daniel, K.;
Chen, D.; Bhuiyan, M.; Kazi, A.; Turos, E.; Dou, Q. P. Front. Biosci. 2004, 9, 2605
ꢀ
2011, 17, 4968; (b) Alcaide, B.; Almendros, P.; Quiros, M. T. Adv. Synth. Catal. 2011,
353, 585; (c) Alcaide, B.; Almendros, P.; Carrascosa, R.; Martínez del Campo, T.
Chem.dEur. J. 2010, 16, 13243; (d) Alcaide, B.; Almendros, P.; Carrascosa, R.;
For a review on anticancer
b-lactams, see: (c) Banik, B. K.; Banik, E.; Becker, F. F.