M. Wang et al. / Bioorg. Med. Chem. Lett. 21 (2011) 354–357
357
Table 4
Predicted results of the acute toxicity, mutagenic toxicity, and log P values for the active compounds 4a, 4c, 4e, and 4k using the CISOC-PSAT,
CISOC-PSMT, and CISOC-log P programs, respectively
Compound Acute toxicity (CISOC-PSAT)
Mutagenic toxicity (CISOC-PSMT)
log P (CISOC-log P)
Predictability Mutagenicity possibility Mutagenicity impossibility
4a
4c
4e
4k
4.05
4.12
4.17
4.39
96%
96%
96%
96%
0.01
0.01
0.01
0.01
0.21
0.28
0.49
0.95
0.62
0.64
2.86
0.38
substance which result either from a single exposure or from mul-
tiple exposures in a short space of time (usually less than 24 h),20
whereas mutagenic toxicity reveals the extent to which a com-
pound is susceptible to induce abnormal mutation. Both acute tox-
icity and mutagenic toxicity are two important indicators of the
toxic potential of a chemical compound. It is therefore important
to evaluate these two parameters for further lead optimization
and development purposes. In toxicology, acute toxicity could be
classified into five levels: severe toxic (rat, oral, LD50 <1 mg/kg,
1 6 predicted value <2), high toxic (rat, oral, LD50: 1–49 mg/kg,
gratefully acknowledged. We thank Mrs. Emily Witty for revising
the English manuscript.
Supplementary data
Supplementary data (experimental details, 1H NMR and 13C
NMR spectra of all the new compounds described) associated with
this article can be found, in the online version, at doi:10.1016/
2 6 predicted value <3), medium toxic (rat, oral, LD50
: 50–
References and notes
499 mg/kg, 3 6 predicted value <4), low toxic (rat, oral, LD50
:
1. Xia, Y.; Liu, Y.; Wan, J. Q.; Wang, M. H.; Rocchi, P.; Qu, F. Q.; Neyts, J.; Iovanna, J.
L.; Peng, L. J. Med. Chem. 2009, 52, 6083.
2. Wan, J. Q.; Xia, Y.; Liu, Y.; Wang, M. H.; Rocchi, P.; Yao, J. H.; Qu, F. Q.; Neyts, J.;
Iovanna, J. L.; Peng, L. J. Med. Chem. 2009, 52, 1144.
3. (a) Li, W.; Fan, Y. T.; Xia, Y.; Rocchi, P.; Zhu, R. Z.; Qu, F. Q.; Neyts, J.; Iovanna, J.
L.; Peng, L. Helv. Chim. Acta 2009, 92, 1503; (b) Liu, Y.; Xia, Y.; Fan, Y. T.;
Maggiani, A.; Rocchi, P.; Qu, F. Q.; Iovanna, J. L.; Peng, L. Bioorg. Med. Chem. Lett.
2010, 20, 2503.
4. (a) Zhu, R. Z.; Wang, M. H.; Xia, Y.; Qu, F. Q.; Neyts, J.; Peng, L. Bioorg. Med. Chem.
Lett. 2008, 18, 3321; (b) Wang, M. H.; Xia, Y.; Fan, Y. T.; Rocchi, P.; Qu, F. Q.;
Iovanna, J. L.; Peng, L. Bioorg. Med. Chem. Lett. 2010, 20, 5979.
5. Li, W.; Xia, Y.; Fan, Z. J.; Qu, F. Q.; Wu, Q. Y.; Peng, L. Tetrahedron Lett. 2008, 49,
2804.
6. Xia, Y.; Li, W.; Qu, F. Q.; Fan, Z. J.; Liu, X. F.; Berro, C.; Rauzy, E.; Peng, L. Org.
Biomol. Chem. 2007, 5, 1695.
7. (a) Zhu, R. Z.; Qu, F. Q.; Quéléver, G.; Peng, L. Tetrahedron Lett. 2007, 48, 2389;
(b) Wan, J. Q.; Zhu, R. Z.; Xia, Y.; Qu, F. Q.; Wu, Q. Y.; Yang, G. F.; Neyts, J.; Peng,
L. Tetrahedron Lett. 2006, 47, 6727.
8. Liu, Y.; Xia, Y.; Li, W.; Cong, M.; Maggiani, A.; Leyssen, P.; Qu, F. Q.; Neyts, J.;
Peng, L. Bioorg. Med. Chem. Lett. 2010, 20, 3610.
9. (a) Xia, Y.; Fan, Z. J.; Yao, J. H.; Liao, Q.; Li, W.; Qu, F. Q.; Peng, L. Bioorg. Med.
Chem. Lett. 2006, 16, 2693; (b) Xia, Y.; Qu, F. Q.; Li, W.; Wu, Q. Y.; Peng, L.
Heterocycles 2005, 65, 345.
10. (a) Xia, Y.; Qu, F. Q.; Peng, L. Mini-Rev. Med. Chem. 2010, 10, 806; (b) Xia, Y.;
Wan, J. Q.; Qu, F. Q.; Peng, L. In Collection Symposium Series; Hocek, M., Ed.;
Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the
Czech Republic: Prague, 2008; Vol. 10, p 224.
11. Amblard, F.; Cho, J. H.; Schinazi, R. F. Chem. Rev. 2009, 109, 4207.
12. (a) Nowak, I.; Robins, M. J. J. Org. Chem. 2006, 71, 8876; (b) Liu, J.; Robins, M. J.
Org. Lett. 2004, 6, 3421; (c) Robins, M. J.; Miles, R. W.; Samano, M. C.; Kaspar, R.
L. J. Org. Chem. 2001, 66, 8204; (d) Zhong, M.; Nowak, I.; Robins, M. J. J. Org.
Chem. 2006, 71, 7773.
13. (a) Kappe, C. O.; Dallinger, D. Mol. Divers. 2009, 13, 71; (b) Kappe, C. O. Angew
Chem., Int. Ed. 2004, 43, 6250.
14. Tullis, J. S.; VanRens, J. C.; Natchus, M. G.; Clark, M. P.; De, B.; Hsieh, L. C.;
Janusz, M. J. Bioorg. Med. Chem. Lett. 2003, 13, 1665.
15. Journet, M.; Cai, D. W.; Kowal, J. J.; Larsen, R. D. Tetrahedron Lett. 2001, 42, 9117.
16. General procedure for preparing 4 via Huisgen reaction: Alkyne (3) (0.20 mmol)
and NaN3 (1.2 equiv, 0.24 mmol) were dissolved in 4 mL DMF. The reaction
mixture was stirred at 90 °C until complete consumption of 3. The reaction
mixture was concentrated under reduced pressure, and dissolved in ethyl
acetate and washed with 1 M HCl solution. The organic phase was reduced and
the obtained residue was purified on silica gel with CH2Cl2/MeOH (20:1–15:1,
v/v), giving the corresponding product 4 as a solid powder.
500–4999 mg/kg, 4 6 predicted value <5), and tiny toxic (rat, oral,
LD50: >5000 mg/kg, predicted value P 5).21 For mutagenic toxicity,
if the predictability is >80% and the mutagenicity possibility is less
than the mutagenicity impossibility, the compound is considered
not mutagenic. Gratifyingly, the results of our calculations reveal
that all the four active compounds have no notable acute toxicity
and are devoid of mutagenic toxicity (Table 4).
We next evaluated the Log P values using the program of CISOC-
log P.22 log P is an index of molecular hydrophobicity, a parameter
which affects the compound bioavailability, the interaction with
the biological targets, and the metabolism, as well as the toxicity.
It has become one of the key parameters used to study the fate
and behavior of bioactive compounds. According to Lipinski’s rule
of five, log P should optimally be <5.23 The prediction results
showed that log P values of the four identified active compounds
are between 0.38 and 2.86 (Table 4), confirming that they repre-
sent promising candidates for further lead optimization and
development.
In conclusion, a new series of bitriazolyl acyclonucleosides C,
the structural isomers of our previously reported bitriazolyl
acyclonucleosides A and B, have been synthesized via a one-step
Huisgen cycloaddition using NaN3 and various internal alkynes of
5-alkynylyltriazole acyclonucleosides. The reaction is straightfor-
ward via an easy-to-perform procedure and gives the correspond-
ing products in good yields. Similar to the previously identified
active hits,5,6,9 some of the newly synthesized bitriazolyl com-
pounds showed interesting anti-TMV activity and were devoid of
any notable toxicity, confirming the importance of the bitriazolyl
motif in the observed antiviral activity against TMV. We are now
actively working towards defining the detailed structure/activity
relationships of this family of compounds and their related biolog-
ical activity against tobacco mosaic virus and other pathogenic
viruses.
17. (a) An, T. Y.; Huang, R. Q.; Yang, Z.; Zhang, D. K.; Li, G. R.; Yao, Y. C.; Gao, J.
Phytochemistry 2001, 58, 1267; (b) Fan, Z. J.; Shi, Z. G.; Zhang, H. K.; Liu, X. F.;
Bao, L. L.; Ma, L.; Zuo, X.; Zheng, Q. X.; Mi, N. J. Agric. Food Chem. 2009, 57, 4279.
18. Prediction System of Acute Toxicity (CISOC-PSAT) V1.0, Registration Number
(China): 0232654.
Acknowledgments
Financial support from the National Mega Project on Major
Drug Development (2009ZX09301-014), Ministry of Science and
Technology of China (no. 2006AA02Z339, 2010CB126103), Ministry
of Environment Protection (China) (no. 200709046), National
Natural Science Foundation of China (no. 20372055, 20572081,
20872071, 20672062), the International Collaboration Program
of the National Natural Science Foundation of China (no.
20911120069, 21010102008), Wuhan University and CNRS are
19. Liao, Q.; Yao, J. H.; Yuan, S. G. Mol. Divers. 2007, 11, 59.
21. Xia, Y. X. Encyclopedia of Toxicity of Chemicals; Shanghai Scientific and
Technological Literature Publisher House Co., Ltd: Shanghai, PR China, 1991.
22. Liao, Q.; Yao, J. H.; Yuan, S. G. Mol. Divers. 2006, 10, 301.
23. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Freeney, P. J. Adv. Drug Deliv. Rev.
1997, 23, 3.