The Journal of Organic Chemistry
ARTICLE
(s, 12 H), 3.59ꢀ3.66 (m, 4 H), 3.72ꢀ3.77 (m, 2 H), 4.03ꢀ4.08 (m, 2 H),
5.67 (s, 1 H), 6.74 (d, J = 8.9 Hz, 4 H), 7.11 ppm (d, J = 8.9 Hz, 4 H). 13C
NMR (CD3CN, 100 MHz): δ 38.0 (t), 40.6 (q), 47.4 (t), 48.1 (t), 56.6 (t),
66.9 (d), 113.2 (d), 124.0 (s), 130.7 (d), 152.1 (s), 177.5 ppm (s). HRMS
(ESI) calculated for C22H29N432S [Mþ] 381.2107, found 381.2112.
(2) (a) H€ofle, G.; Steglich, W.; Vorbr€uggen, A. Angew. Chem., Int. Ed.
1978, 17, 569–583. (b) Murugan, R.; Scriven, E. F. V. Aldrichimica Acta
2003, 36, 21–27. (c) Spivey, A. C.; Arseniyadis, S. Angew. Chem., Int. Ed.
2004, 43, 5436–5441. (d) For mechanistic interpretations, see: Xu, S.;
Held, I.; Kempf, B.; Mayr, H.; Steglich, W.; Zipse, H. Chem.—Eur. J.
2005, 11, 4751–4757. (e) Lutz, V.; Glatthaar, J.; W€urtele, C.; Serafin,
M.; Hausmann, H.; Schreiner, P. R. Chem.—Eur. J. 2009, 15, 8548–
8557.
ꢀ
Formation of 7P-BF4. Equimolar amounts of (dma)2CHþBF4
(16 mg, 0.047 mmol) and 7 (8.3 mg, 0.047 mmol) were mixed in d6-
DMSO (0.6 mL) in an NMR tube under nitrogen and the NMR was
taken after few minutes of shaking. 7P-BF4: 1H NMR (d6-DMSO, 400
MHz): δ 2.93 (s, 12 H), 4.27ꢀ4.32 (m, 2 H), 4.53ꢀ4.58 (m, 2 H), 5.91
(s, 1 H), 6.77 (d, J = 8.8 Hz, 4 H), 7.25 (d, J = 8.8 Hz, 4 H), 7.30ꢀ7.35
(m, 1 H), 7.55 (d, J = 3.9 Hz, 2 H), 7.93 ppm (d, J = 8.1 Hz, 1 H). 13C
NMR (d6-DMSO, 100 MHz): δ 39.9 (q), 44.8 (t), 55.1 (t), 65.2 (d),
112.0 (d), 112.2 (d), 123.0 (s), 124.3 (d), 124.4 (d), 127.5 (s), 128.1 (d),
129.5 (d), 134.0 (s), 150.4 (s), 168.8 ppm (s).
(3) For a select example, see: Connors, K. A.; Pandit, N. K. Anal.
Chem. 1978, 50, 1542–1545.
(4) For select examples, see: (a) Lohmeijer, B. G. G.; Pratt, R. C.;
Leibfarth, F.; Logan, J. W.; Long, D. A.; Dove, A. P.; Nederberg, F.; Choi,
J.; Wade, C.; Waymouth, R. M.; Hedrick, J. L. Macromolecules 2006,
39, 8574–8583. (b) Shieh, W.-C.; Dell, S.; Repic, O. J. Org. Chem. 2002,
67, 2188–2191. (c) Zhang, W.; Shi, M. Org. Biomol. Chem. 2006,
4, 1671–1674. (d) Price, K. E.; Larrivꢀee-Aboussafy, C.; Lillie, B. M.;
McLaughlin, R. W.; Mustakis, J.; Hettenbach, K. W.; Hawkins, J. M.;
Vaidyanathan, R. Org. Lett. 2009, 11, 2003–2006. (e) Larrivꢀee-Aboussafy, C.;
Jones, B. P.; Price, K. E.; Hardink, M. A.; McLaughlin, R. W.; Lillie, B. M.;
Hawkins, J. M.; Vaidyanathan, R. Org. Lett. 2010, 12, 324–327. (f)
Taylor, J. E.; Jones, M. D.; Williams, J. M. J.; Bull, S. D. Org. Lett. 2010,
12, 5740–5743.
(5) (a) Birman, V. B.; Uffman, E. W.; Jiang, H.; Li, X.; Kilbane, C. J. J.
Am. Chem. Soc. 2004, 126, 12226–12227. (b) Birman, V. B.; Jiang, H.
Org. Lett. 2005, 7, 3445–3447. (c) Birman, V. B.; Li, X.; Jiang, H.;
Uffman, E. W. Tetrahedron 2006, 62, 285–294.
(6) Kobayashi, M.; Okamoto, S. Tetrahedron Lett. 2006, 47, 4347–
4350.
Formation of 9P-BF4. To a blue solution of (dma)2CHþBF4ꢀ (22
mg, 0.065 mmol) in CH2Cl2 (1 mL) was added drop by drop a solution
of 9 (9.2 mg, 0.062 mmol) in dry CH2Cl2 (1 mL) under nitrogen at
room temperature. After the disappearance of the blue color of the
solution the solvent was evaporated, and the residue was washed with i-
hexane to get 9P-BF4: 27 mg (0.058 mmol, 89%, viscous liquid). 9P-
BF4: 1H NMR (CD3CN, 400 MHz): δ 2.02ꢀ2.07 (m, 2 H), 2.94 (s, 12
H), 3.17ꢀ3.20 (m, 2 H), 3.41ꢀ3.47 (m, 4 H), 4.00 (t, J = 7.7 Hz, 2 H),
5.98 (s, 1 H), 6.75 (d, J = 8.9 Hz, 2 H), 7.03 ppm (d, J = 8.4 Hz, 4 H). 13C
NMR (CD3CN, 100 MHz): δ 20.2 (t), 29.2 (t), 40.6 (q), 44.5 (t), 45.6
(t), 57.0 (t), 72.9 (d), 113.3 (d), 124.3 (s), 130.4 (d), 151.8 (s), 168.3
ppm (s). HRMS (ESI) calculated for C23H31N432S [Mþ] 395.2264,
found 395.2265.
(7) Birman, V. B.; Li, X.; Han, Z. Org. Lett. 2007, 9, 37–40.
(8) (a) Joannesse, C.; Simal, C.; Concellꢀon, C.; Thomson, J. E.;
Campbell, C. D.; Slawin, A. M. Z.; Smith, A. D. Org. Biomol. Chem. 2008,
6, 2900–2907. (b) Woods, P. A.; Morrill, L. C.; Lebl, T.; Slawin, A. M. Z.;
Bragg, R. A.; Smith, A. D. Org. Lett. 2010, 12, 2660–2663.
ꢀ
Formation of 10P-BF4. Equimolar amounts of (dma)2CHþBF4
(13 mg, 0.038 mmol) and DHPB 10 (7.3 mg, 0.038 mmol) were mixed
in d6-DMSO (0.6 mL) in an NMR tube under nitrogen, and the NMR
was taken after few minutes of shaking. 10P-BF4: 1H NMR (d6-DMSO,
400 MHz): δ 2.28ꢀ2.31 (m, 2 H), 2.92 (s, 12 H), 3.43ꢀ3.45 (m, 2 H),
4.23 (t, J = 5.9 Hz, 2 H), 6.12 (s, 1 H), 6.76 (d, J = 8.9 Hz, 4 H), 7.15 (d,
J = 8.7 Hz, 4 H), 7.41ꢀ7.45 (m, 1 H), 7.59ꢀ7.63 (m, 1 H), 7.69 (d, J =
7.8 Hz, 1 H), 8.04 ppm (d, J = 8.0 Hz, 1 H). 13C NMR (d6-DMSO, 100
MHz): δ 18.4 (t), 39.9 (q), 43.0 (t), 45.0 (t), 70.9 (d), 112.2 (d), 112.9
(d), 121.9 (s), 122.4 (s), 123.3 (d), 125.0 (d), 128.0 (d), 129.4 (d), 138.8
(s), 150.3 (s), 164.3 ppm (s).
(9) Birman, V. B.; Li, X. Org. Lett. 2006, 8, 1351–1354.
(10) For kinetic resolutions using anhydrides as acylating
agents, see: (a) Birman, V. B.; Jiang, H.; Li, X.; Geo, V.; Uffman,
E. W. J. Am. Chem. Soc. 2006, 128, 6536–6537. (b) Reference 9. (c)
Birman, V. B.; Geo, L. Org. Lett. 2006, 8, 4859–4861. (d) Birman, V. B.;
Li, X. Org. Lett. 2008, 10, 1115–1118. (e) Yang, X.; Birman, V. B. Adv.
Synth. Catal. 2009, 351, 2301–2304. (f) Xu, Q.; Zhou, H.; Geng, X.;
Chen, P. Tetrahedron 2009, 65, 2232–2238. For kinetic resolutions
using carboxylic acids as acylating agents utilizing in situ formation of a
reactive mixed anhydride, see: (g) Shiina, I.; Nakata, K. Tetrahedron. Lett.
2007, 48, 8314–8317. (h) Shiina, I.; Nakata, K.; Sugimoto, M.; Onda, Y.;
Iizumi, T.; Ono, K. Heterocycles 2009, 77, 801–810. (i) Yang, X.; Birman,
V. B. Adv. Synth. Catal. 2009, 351, 2301–2304. (j) Shiina, I.; Nakata, K.
Heterocycles 2010, 80, 169–175. (k) Shiina, I.; Nakata, K.; Onda, Y. Eur. J.
Org. Chem. 2008, 5887–5890. (l) Shiina, I.; Nakata, K.; Ono, K.;
Sugimoto, M.; Sekiguchi, A. Chem.—Eur. J. 2010, 16, 167–172. (m)
Nakata, K.; Onda, Y.; Ono, K.; Shiina, I. Tetrahedron. Lett. 2010,
51, 5666–5669. (n) Shiina, I.; Ono, K.; Nakata, K. Chem. Lett. 2011,
40, 147–149.
’ ASSOCIATED CONTENT
S
Supporting Information. Copies of NMR spectra of the
b
products, details of the equilibrium and rate measurements.
This material is available free of charge via the Internet at
’ AUTHOR INFORMATION
(11) Birman, V. B.; Jiang, H.; Li, X. Org. Lett. 2007, 9, 3237–3240.
(12) Kalow, J. A.; Doyle, A. G. J. Am. Chem. Soc. 2010, 132, 3268–3269.
(13) Yang, X.; Lu, G.; Birman, V. B. Org. Lett. 2010, 12, 892–895.
(14) (a) Purohit, V. C.; Matla, A. S.; Romo, D. J. Am. Chem. Soc.
2008, 130, 10478–10479. (b) Leverett, C. A.; Purohit, V. C.; Romo, D.
Angew. Chem., Int. Ed. 2010, 49, 9479–9483. (c) Belmessieri, D.; Morrill,
L. C.; Simal, C.; Slawin, A. M. Z.; Smith, A. D. J. Am. Chem. Soc. 2011,
133, 2714–2720. For other Lewis base mediated reactions utilizing
carboxylic acids as ammonium enolate precursors, see: (d) Cortez, G. S.;
Tennyson, R. L.; Romo, D. J. Am. Chem. Soc. 2001, 123, 7945–7946. (e)
Cortez, G. S.; Oh, S. H.; Romo, D. Synthesis 2001, 1731–1736. (f) Oh,
S. H.; Cortez, G. S.; Romo, D. J. Org. Chem. 2005, 70, 2835–2838. (g)
Henry-Riyad, H.; Lee, C.; Purohit, V. C.; Romo, D. Org. Lett. 2006,
8, 4363–4366. (h) Ma, G.; Nguyen, H.; Romo, D. Org. Lett. 2007,
9, 2143–2146. (i) Nguyen, H.; Ma, G.; Romo, D. Chem. Commun. 2010,
46, 4803–4805. (j) Morris, K. A.; Arendt, K. M.; Oh, S. H.; Romo, D.
Corresponding Author
*E-mail: Herbert.Mayr@cup.uni-muenchen.de.
’ ACKNOWLEDGMENT
We thank the Deutsche Forschungsgemeinschaft (SFB 749),
the Royal Society (URF to A.D.S.), and the EPSRC (C.J.) for
financial support. Valuable suggestions by Dr. Armin R. Ofial and
Dr. Mahiuddin Baidya are gratefully acknowledged.
’ REFERENCES
(1) For an excellent review, see: Denmark, S. E.; Beutner, G. L.
Angew. Chem., Int. Ed. 2008, 47, 1560–1638.
5111
dx.doi.org/10.1021/jo200803x |J. Org. Chem. 2011, 76, 5104–5112