G. Chen et al. / Bioorg. Med. Chem. Lett. 21 (2011) 234–239
239
Table 5
EC50 induction for variations at R1 and R2
F
N
R2
R1
17a-j, 18a-g, 19a-g
F
R2
R1
O
O
OH
N
H
CH3
O
CH3
Compound/EC50
(lM)
Compound/EC50
(
lM)
Compound/EC50 (lM)
H
4-F
4-Cl
4-Br
4-CF3
4-CH3
3-F3
3-CF3
3-CH3
4-Cl-3-CF3
17a/12.0
17b/6.1
17c/7.7
17d/2.2
17e/4.2
17f/6.4
17g/10.1
17h/6.7
17i/24.6
17j (2)/3.2
18a/>50
18b/5.4
18c/5.0
18d/2.6
18e/4.5
18f/4.4
—
19a/6.2
19b/3.0
19c/3.0
19d/2.5
19e/3.5
19f/2.2
—
—
—
—
—
18g/6.3
19g/4.0
2. (a) Lum, J. J.; DeBerardinis, R. J.; Thompson, C. B. Nat. Rev. Mol. Cell. Biol. 2005, 6,
439; (b) Hara, T.; Nakamura, K.; Matsui, M.; Yamamoto, A.; Nakahara, Y.;
Suzuki-Migishima, R.; Yokoyama, M.; Mishima, K.; Saito, I.; Okano, H.;
Mizushima, N. Nature 2006, 441, 885.
3. Zhang, L.; Yu, J.; Pan, H.; Hu, P.; Hao, Y.; Cai, W.; Zhu, H.; Yu, A.; Xie, X.; Ma, D.;
Yuan, J. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 19023.
4. Williams, A.; Sarkar, S.; Cuddon, P.; Ttofi, E. K.; Saiki, S.; Siddiqi, F. H.; Jahreiss,
L.; Fleming, A.; Pask, D.; Goldsmith, P.; O’Kane, C. J.; Floto, R. A.; Rubinsztein, D.
C. Nat. Chem. Biol. 2008, 4, 295.
5. Xia, H.; Zhang, L.; Chen, G.; Zhang, T.; Liu, J.; Jin, M.; Ma, X.; Ma, D.; Yuan, J.
Autophagy 2010, 6, 1.
6. Seeman, P.; Lee, T.; Chau-Wong, M.; Wong, K. Nature 1976, 261, 717.
7. (a) Gould, R. J.; Murphy, K. M. M.; Reynolds, I. J.; Snyder, S. H. Proc. Natl. Acad.
Sci. U.S.A. 1983, 80, 5122; (b) Grantham, C. J.; Main, M. J.; Cannell, M. B. Br. J.
Pharmacol. 1994, 111, 483; (c) Sah, D. W. Y.; Bean, B. P. Mol. Pharmacol. 1994, 45,
84; (d) Enyeart, J. J.; Biagi, B. A.; Day, R. N.; Sheu, S. S.; Maurer, R. A. J. Biol. Chem.
1990, 265, 16373; (e) Galizzi, J. P.; Fosset, M.; Romey, G.; Laudron, P.;
Lazdunski, M. Proc. Natl. Acad. Sci. U.S.A. 1986, 83, 7513; (f) King, V. F.; Garcia, M.
L.; Shevell, J. L.; Slaughter, R. S.; Kaczorowski, G. J. J. Biol. Chem. 1989, 264, 5633.
8. Hulshof, J. W.; Vischer, H. F.; Verheij, H. F.; Fratantoni, M. H. P.; Smit, M. J.; de
Esch, I. J. P.; Leurs, R. Bioorg. Med. Chem. 2006, 14, 7213.
9. (a) Sindelar, K.; Rajsner, M.; Cervena, I.; Valenta, V.; Jilek, J. O.; Kakac, B.;
Holubek, J.; Svatek, E.; Miksik, F.; Protiva, M. Collect. Czech. Chem. Commun.
1973, 38, 3879; (b) Botteghi, C.; Marchetti, M.; Paganelli, S.; Persi-Paoli, F.
Tetrahedron 2001, 57, 1631; (c) Hulshof, J. W.; Casarosa, P.; Menge, M. P. B.;
Kuusisto, L. M.; van der Goot, H.; Smit, M. J.; de Esch, I. J. P.; Leurs, R. J. Med.
Chem. 2005, 48, 6461.
compound 17a with no substituent on the phenyl ring showed de-
creased bioactivity.
Since it has been found that the presence of a hydroxyl group at 4-
position of the piperidine ring may lead to potential metabolic tox-
icity,20 introduction of an ester group and amide group was then
achieved to eliminate the negative effect (Table 5). Unfortunately,
18a–f showed no improved activity when compared with 17a–f.
On the other hand encouraging results were obtained when an
amide group was introduced (19a–f). However, both compounds
18g and 19g displayed decreased inducing activity compared with
compound 17j, indicating appropriate space on the piperidine ring
is responsible to the activity of compound under investigation.
In summary, we have identified
a novel class of diph-
enylbutylpiperidines as effective autophagy inducers. An effective
synthetic route to diphenylbutyl bromide has also been developed.
Structural modifications of compound 1 and 2 bring in significant
increase of activity (compounds 15d, 15e, 15i, 15j). Besides this, ef-
fects of structural variations on either the left-hand or the right-
hand were studied as well. Moreover, substituents on the piperi-
dine phenyl ring of compound 2 were investigated in the same
way. Further SAR exploration to improve the overall biological
activity profiles and structural modifications of Pimozide will be
reported in due course.
10. Rajsner, M.; Dlabac, A.; Protira, M. Collect. Czech. Chem. Commun. 1981, 46,
1530.
11. For the synthesis of the left side of compound 12b, see Ref.: Kulp, S. S.; Fish, V.
B.; Easton, N. R. J. Med. Chem. 1963, 6, 516.
12. The structure of the left side of compound 12d is the same as compound 5
(R = 4-F).
Acknowledgments
13. The carboxylic acid group in the left of compound 12e can be prepared from
compound 4 (R = 4-F) by hydrogenation, Jones oxidation.
14. For the synthesis of these left sides of compounds 12f–i, see Ref.: Janssen, P. A.
J.; van der Westeringh, C.; Jageneau, A. H. M.; Demoen, P. J. A.; Hermans, B. K.
F.; van Daele, G. H. P.; Schellekens, K. H. L.; van der Eycken, C. A. M.;
Niemegeerx, C. J. E. J. Med. Chem. 1959, 1, 281.
This work was supported in part by grants from the National
Natural Science Foundation of China (No. 21072212 to C.Y.) and
the National Institute of Health of US (to J.Y.).
15. The left side of compound 12j can be synthesized from the same route as
Supplementary data
showed in Scheme 1 with the starting material d-valerolactone instead of
butyrolactone.
c-
16. Kashali, N.; Polat, M. F.; Altundas, R.; Kara, Y. Helv. Chim. Acta 2008, 91, 67.
17. In this Letter we mainly used the left side with three carbon chain due to its
easy preparation.
Supplementary data associated with this article can be found, in
18. The right side of compound 16e can be prepared from compound 10 (R = CH3)
by removing the Boc group with trifluoroacetic acid, and hydrogenation of
compound 16e can give compound 16f.
References and notes
19. The right side of compound 16j is commercially available.
20. Castagnoli, N., Jr.; Rimoldi, J. M.; Bloomquist, J.; Castagnoli, K. P. Chem. Res.
Toxicol. 1997, 10, 924.
1. (a) Shintani, T.; Klionsky, D. J. Science 2004, 306, 990; (b) Mizushima, N.; Levine,
B.; Cuervo, A. M.; Klionsky, D. J. Nature 2008, 451, 1069.