by Cotton for the bonding in [Re3Cl9(m2-Cl)3]3ꢀ.[20] Mixing the
frontier orbitals of the three iron centers produces four
bonding, three non-bonding, and five anti-bonding molecular
orbital combinations (illustrated in Figure S12). Populating
1148; c) A. L. Keen, M. Doster, H. Han, S. A. Johnson, Chem.
Lefebvre, D. B. Leznoff, G. Lawes, S. A. Johnson, J. Am. Chem.
Palavicini, B. E. Kucera, L. Casella, W. B. Tolman, Dalton Trans.
2
2
4
4
the 18 Fe
d
electrons [(1a1)s (2a1)s (1e)p (3a1)nb2(2e)nb
-
2
2
4
2
)s (2a1)s (1e)p (3a1)nb2(2e)nb4(1a2)s*2(3e)p*
] suggests a net
bond order of 2 within the triiron core, consistent with the
ꢀ
short Fe Fe bonds in 2a and 2b, and predicts triplet ground
state for the low-spin molecule. Furthermore, oxidation of 2a
ꢀ
would remove an electron from an Fe Fe antibonding orbital
[9] E. B. Fleischer, A. E. Gebala, A. Levey, P. A. Tasker, J. Org.
(removing an electron from the (1a2)s* orbital to give
the S = 3/2 formulation [(1a1)s (2a1)s (1e)p (3a1)nb2(2e)nb
-
2
2
4
4
ꢀ
[10] 1: C39H56Mg3N6O4, Mr = 745.83, triclinic, P1, a = 12.546(1), b =
(1a2)s*1(3e)p*2]), consistent with the observed contraction in
the triiron core observed in 3 and maintaining the electronic
equivalence of the iron ions within the molecule for both
neutral 2 and cationic 3.
12.834(2), c = 14.047(2) ꢀ, a = 95.038(2)8, b = 101.484(2)8, g =
118.428(2)8, V= 1904.8(4) ꢀ3, Z = 2, 1calcd = 1.300 Mgmꢀ3, m =
0.129 mmꢀ1
, R1 = 0.0467, wR2 = 0.1163, GOF = 1.024. 2a:
C32H51Fe3N6P3, Mr = 780.25, triclinic, P1, a = 12.6339(5), b =
17.0101(7), c = 17.4540(7) ꢀ, a = 91.360(3)8, b = 91.290(3)8, g =
108.680(2)8, V= 3550.3(2) ꢀ3, Z = 4, 1calcd = 1.460 Mgmꢀ3, m =
The new hexadentate ligand permits the isolation and full
characterization of all-ferrous triiron complexes. The trime-
1.377 mmꢀ1
,
R1 = 0.1029, wR2 = 0.1461, GOF = 1.002. 2b:
ꢀ
tallic complexes feature very short Fe Fe distances, consis-
ꢀ
C47H57Fe3N6P3, Mr = 966.45, triclinic, P1, a = 12.7214(5), b =
12.7230(4), c = 31.643(1) ꢀ, a = 82.402(2)8, b = 79.382(2)8, g =
60.162(2)8, V= 4361.6(3) ꢀ3, Z = 4, 1calcd = 1.472 Mgmꢀ3, m =
tent with strong bonding between the metal sites. The
surprisingly low chemical potential observed for the triiron
complex is attributed to the strong M–M interactions present.
The bonding within the triiron core can be described by
mixing of the frontier metal 3d orbitals, which predicts a
triplet ground-state for the low-spin complex and allows the
observed spectral data to be described in terms of the
molecular electronic structure. Work is currently underway to
investigate how the electronic structure can be varied by
ligand steric modification and ancillary ligand substitution.
1.137 mmꢀ1
,
R1 = 0.0804, wR2 = 0.0948, GOF = 1.006. 3:
C36H59F6Fe3N6OP4, Mr = 997.32, monoclinic, P21/n, a =
12.542(1), b = 20.036(2), c = 18.663(2) ꢀ, b = 107.673(1)8, V=
4468.7(9) ꢀ3, Z = 4, 1calcd = 1.482 Mgmꢀ3, m = 1.165 mmꢀ1, R1 =
0.0371, wR2 = 0.0914, GOF = 1.027. CCDC 765960 (1), 765961
(2a), 765962 (2b), 772302 (3) contain the supplementary
crystallographic data for this paper. These data can be obtained
free of charge from The Cambridge Crystallographic Data
[11] Multiple Bonds Between Metal Atoms (Eds.: F. A. Cotton, C. A.
Murillo, R. A. Walton), 3rd ed., Springer, New York, 2005,
pp. 447 – 451.
Received: August 19, 2010
Keywords: iron complexes · metal cluster · polyamide ligand ·
[12] The 2009 update of the CSD was searched (WebCSD v1.0.4) to
[13] Shortest dFe–Fe for Fen, n ꢁ 3: a) E. J. Wucherer, M. Tasi, B.
Hansert, A. K. Powell, M.-T. Garland, J.-F. Halet, J.-Y. Saillard,
Gao, T. C. W. Mak, B.-S. Kang, B.-M. Wu, Y.-J. Xu, Y.-X. Tong,
X.-L. Yu, J. Chem. Res. Synop. 1996, 5, 186 – 187; c) M. Kim, J.
[14] Shortest dFe–Fe for diiron complexes: a) F. A. Cotton, L. M.
Daniels, L. R. Falvello, H. J. Matonic, C. A. Murillo, Inorg.
282; c) J. P. Blaha, B. E. Bursten, J. C. Dewan, R. B. Frankel,
.
polynuclear complexes · redox reactions
[1] a) J. W. Peters, M. H. B. Stowell, S. M. Soltis, M. G. Finnegan,
b) S. M. Mayer, D. M. Lawson, C. A. Gormal, S. M. Roe, B. E.
Tezcan, S. Andrade, B. Schmid, M. Yoshida, J. B. Howard, D. C.
[2] a) J. H. A. Nugent, A. M. Rich, M. C. W. Evans, Biochim.
T. M. Iverson, K. Maghlaoui, J. Barber, S. Iwata, Science 2004,
[3] a) K. Brown, K. Djinovic-Carugo, T. Haltia, I. Cabrito, M.
Saraste, J. J. G. Moura, I. Moura, M. Tegoni, C. Cambillau, J.
M. PrudÞncio, A. S. Pereira, S. Besson, J. J. Moura, I. Moura, C.
Cambillau, Nat. Struct. Biol. 2000, 7, 191 – 195; c) P. Chen, S. D.
George, I. Cabrito, W. E. Antholine, J. G. Moura, I. Moura, B.
[5] a) J. C. Fontecilla-Camps, J. Biol. Inorg. Chem. 1996, 1, 91 – 98;
ꢀ
[15] Pauling predicts an Fe Fe single bond of 2.33 ꢀ. L. Pauling, The
Nature of the Chemical Bond, 3rd ed., Cornell University Press,
Ithaca, 1960, p. 403.
[16] The increased distance cannot be accounted for by the increased
ionic radius for Mg2+ alone; see R. D. Shannon, C. T. Prewitt,
Anillo, M. R. Diaz, S. Garcia-Granda, R. Obeso-Rosete, A.
481; d) E. Bill, E. Bothe, P. Chaudhuri, K. Chlopek, K. Herebian,
S. Kokatam, K. Ray, T. Weyhermꢃller, F. Neese, K. Wieghardt,
Weyhermꢃller, K. Wieghardt, Inorg. Chem. 2005, 44, 7087 –
7098.
Angew. Chem. Int. Ed. 2011, 50, 709 –712
ꢀ 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
711