the corresponding sulfonium salts with stoichiomeric
amount of base.8-10
Scheme 1. Indolin-2-one Synthesis via Thia-Sommelet-Hauser
Rearrangement
On the other hand, the reaction of sulfide with the in situ
generated metal carbene, which can be easily achieved by
transition-metal-catalyzed reaction of diazo compounds,
is another reliable way to form sulfonium ylide.12 This
method has been proved to be highly efficient and oper-
ationally simple and can avoid the introduction of stoi-
chiometric base. Various [2,3]-sigmatropic and 1,2-shift
rearrangements of sulfonium ylides based on this method
have been previously reported.13,14 However, application
of this approach to catalytic thia-Sommelet-Hauser re-
arrangement has been so far rather limited. Aggarwal and
co-workers reported the first catalytic thia-Sommelet-
Hauser rearrangement that was observed as side
reaction.11a Wehaverecentlydevelopeda Rh(II)-catalyzed
thia-Sommelet-Hauser rearrangement that can be used as
an efficient way to introduce a substituent to the ortho
position of arylacetates efficiently.11b As an extension of
this work, we further conceived that the sulfonium ylide
intermediate A in Gassman’s oxindole synthesis should be
accessed through a catalytic carbene transformation by
invoking a sulfenamide as substrate to react with metal
carbene (Scheme 1). If this is indeed the case, then a
catalytic version of Gassmen’s oxindole synthesis will be
achieved. Herein, we report the results of the study along
this line.
Initially, we observed that when a 3:1 mixture of
diazoacetate 2a15 and sulfenamide 1a16 in toluene was
catalyzed by 0.5 mol % of Rh2(OAc)4, 1,3-dimethyl-
3-(phenylthio)oxindole 3a was isolated in 42% yield
(Table 1, entry 1). A series of Rh(II) catalysts were then
examined in order to optimize the reaction conditions.
Rh2(O2CCF3)4 only gave trace amount of product (entry
2);Rh2(O2CC3F7)4 and Rh2(acam)4 alsoled toloweryields
(entries 3 and 4). Chiral dirhodium catalysts Rh2(S-DOSP)4
and Rh2(S-TBSP)4 afforded oxindole 3a with relatively
high yields (entries 5 and 6). It was noted that the reaction
type of oxindoles,4-9 we noticed that Gassman and co-
workers developed a useful method to synthesize (3-
methylthio)oxindoles by the reaction of R-carboalkoxy
sulfides and aniline derivatives through a thia-Somme-
let-Hauser rearrangement (Scheme 1).8 The synthesis
needs several steps, which include (a) formation of mono-
N-chloroaniline; (b) generatation of azasulfonium salt; (c)
the formation of sulfonium ylide A by treatment of the salt
with base; (d) thia-Sommelet-Hauser-type rearrangement
leading to imine B; and (e) acid-promoted intramolecular
attack of the amino group on the carbonyl group. Later,
Wierenga further optimized this procedure.9a
In Gassman’s synthesis, thia-Sommelet-Hauser rear-
rangement is the key step, which is a unique process
involving a [2,3]-sigmatropic dearomatization with subse-
quent [1,3]-shift rearomatization. This unique rearrange-
ment is a useful way for constructing a cyclic quaternary
carbon center from aromatic rings8,9 or making ortho-
substitutedaromatic compounds.10,11 It is noteworthy that
in classic thia-Sommelet-Hauser rearrangement, the for-
mation of sulfonium ylides is achieved by the treatment of
(12) For reviews, see: (a) Hodgson, D. M.; Pierard, T. M.; Stupple,
P. A. Chem. Soc. Rev. 2001, 30, 50. (b) Mehta, G.; Muthusamy, S.
Tetrahedron 2002, 58, 9477. (c) Reggelin, M. Top. Curr. Chem. 2007, 275,
1. (d) Braverman, S.; Cherkinsky, M. Top. Curr. Chem. 2007, 275, 67. (e)
Zhang, Y.; Wang, J. Coord. Chem. Rev. 2010, 254, 941.
(6) (a) McAllister, L. A.; McCormick, R. A.; Brand, S.; Procter, D. J.
Angew. Chem., Int. Ed. 2005, 44, 452. (b) Miller, M.; Vogel, J. C.; Tsang,
W.; Merrit, A.; Procter, D. J. Org. Biomol. Chem. 2009, 7, 589. (c) Miller,
M.; Tsang, W.; Merritt, A.; Procter, D. J. Chem. Commun. 2007, 498.
(7) Santos, P. F.; Almeida, P. S.; Lobo, A. M.; Prabhakar, S.
Heterocycles 2001, 55, 1029.
(8) (a) Gassman, P. G.; van Bergen, T. J. J. Am. Chem. Soc. 1973, 95,
2718. (b) Gassman, P. G.; van Bergen, T. J. J. Am. Chem. Soc. 1974, 96,
5508. (c) Gassman, P. G.; Gruetzmacher, G.; van Bergen, T. J. J. Am.
Chem. Soc. 1974, 96, 5512.
(13) For selected recent reports on transition metal-catalyzed sulfur
ylide [1,2] shift, see: (a) Murphy, G. K.; West, F. G. Org. Lett. 2005, 7,
1801. (b) Nair, V.; Nair, S. M.; Mathai, S.; Liebscher, J.; Ziemer, B.;
Narsimulu, K. Tetrahedron Lett. 2004, 45, 5759. (c) Ellis-Holder, K. K.;
Peppers, B. P.; Kovalevsky, A. Y.; Diver, S. T. Org. Lett. 2006, 8, 2511.
(d) Stepakov, A. V.; Molchanov, A. P.; Magull, J.; Vidovic, D.; Starova,
G. L.; Kopf, J.; Kostikov, R. R. Tetrahedron 2006, 62, 3610.
(14) For selected recent reports on transition metal-catalyzed sulfur
ylide [2,3] sigmatropic rearrangement, see: (a) Novikov, A. V.; Kennedy,
A. R.; Rainier, J. D. J. Org. Chem. 2003, 68, 993. (b) Nyong, A. M.;
Rainier, J. D. J. Org. Chem. 2005, 70, 746. (c) Ma, M.; Peng, L.; Li, C.;
Zhang, X.; Wang, J. J. Am. Chem. Soc. 2005, 127, 15016. (d) Liao, M.;
Wang, J. Green Chem. 2007, 9, 184.
(15) For preparation of diazo compounds 2a-f, see: (a) Peng, C.;
Wang, Y.; Wang, J. J. Am. Chem. Soc. 2008, 130, 1566. (b) Shi, G.; Xu,
Y. J. Chem. Soc. Chem. Commun. 1989, 607. (c) Taber, D. F.; You, K.;
Song, Y. J. Org. Chem. 1995, 60, 1093. (d) Taber, D. F.; Sheth, R. B.;
Joshi, P. V. J. Org. Chem. 2005, 70, 2851.
(16) For preparation of sulfenamides, see: (a) Barrett, A. G. M.;
Dhanak, D.; Graboski, G. G.; Taylor, S. J. Org. Synth. 1993, 68, 8. (b)
Davis, F. A.; Horner, C. J.; Fretz, E. R.; Stackhouse, J. F. J. Org. Chem.
1973, 38, 695.
(9) (a) Wierenga, W.; Griffin, J.; Warpehoski, M. A. Tetrahedron
Lett. 1983, 24, 2437. (b) Karp, G. M.; Condon, M. E. J. Heterocycl.
Chem. 1994, 31, 1513.
(10) (a) Ishibashi, H.; Tabata, T.; Kobayashi, T.; Takamuro, I.;
Ikeda, M. Chem. Pharm. Bull. 1991, 39, 2878. (b) Berger, R.; Ziller,
J. W.; Van Vranken, D. L. J. Am. Chem. Soc. 1998, 120, 841. (c) Padwa,
A.; Gasdaska, J. R. J. Org. Chem. 1986, 51, 2857. (d) Mitani, M.;
Tsuchida, M.; T.; Koyama, K. J. Chem. Soc. Chem.Commun. 1974, 869.
(e) Yamamoto, M.; Kakinuma, M.; Kohmoto, S.; Yamada, K. Bull.
Chem. Soc. Jpn. 1989, 62, 958. (f) Tanzawa, T.; Ichioka, M.; Shirai, N.;
Sato, Y. J. Chem. Soc. Perkin Trans. 1 1995, 431.
(11) (a) Aggarwal, V. K.; Smith, H. W.; Hynd, G.; Jones, R. V. H.;
Fieldhouse, R.; Spey, S. E. J. Chem. Soc. Perkin Trans. 1 2000, 3267. (b)
Liao, M.; Peng, L.; Wang, J. Org. Lett. 2008, 10, 693.
Org. Lett., Vol. 13, No. 5, 2011
1211