The Journal of Organic Chemistry
NOTE
leading to an intramolecular PET process from [Tb 1]3þ to 2 as
’ REFERENCES
3þ 3
acceptors (Scheme 2b). Instead, when [Tb 1 2] complex was
(1) (a) Fyfe, M. C. T.; Stoddart, J. F. Acc. Chem. Res. 1997, 30, 393–
401. (b) Raymo, F. M.; Stoddart, J. F. Chem. Rev. 1999, 99, 1643–1664.
(c) Kim, K. Chem. Soc. Rev. 2002, 31, 96–107. (d) Zhang, M.; Zhu, K.;
Huang, F. Chem. Commun. 2010, 46, 8131–8141.
(2) (a) Li, Q.; Sue, C.-H.; Basu, S.; Shveyd, A. K.; Zhang, W.; Barin, G.;
Fang, L.; Sarjeant, A.; Stoddart, J. F.; Yaghi, O. M. Angew. Chem., Int. Ed.
2010, 49, 6751–6755. (b) Fang, L.; Olson, M. A.; Stoddart, J. F. Chem. Soc.
Rev. 2010, 39, 17–29. (c) Zhu, X.-Z.; Chen, C.-F. J. Am. Chem. Soc. 2005,
127, 13158–13159. (d) Zhao, J.-M.; Zong, Q.-S.; Chen, C.-F. J. Org. Chem.
2010, 75, 5092–5098.
(3) (a) Spruell, J. M.; Coskun, A.; Friedman, D. C.; Forgan, R. S.; Sarjeant,
A. A.; Trabolsi, A.; Fahrenbach, A. C.; Barin, G.; Paxton, W. F.; Dey, S. K.;
Olson, M. A.; Benítez, D.; Tkatchouk, E.; Colvin, M. T.; Carmielli, R.;
Caldwell, S. T.; Rosair, G. M.; Hewage, S. G.; Duclairoir, F.; Seymour, J. L.;
Slawin, A. M. Z.; Goddard, W. A., III; Wasielewski, M. R.; Cooke, G.; Stoddart,
J. F. Nature Chem. 2010, 2, 870–879. (b) Klivansky, L. M.; Koshkakaryan, G.;
Cao, D.; Liu, Y. Angew. Chem., Int. Ed. 2009, 48, 4185–4189.
(4) (a) Bernꢀa, J.; Leigh, D. A.; Lubomska, M.; Mendoza, S. M.; Pꢀerez,
E. M.; Rudolf, P.; Teobaldi, G.; Zerbetto, F. Nature Mater. 2005, 4, 704–
710. (b) Wang, F.; Zhang, J.; Ding, X.; Dong, S.; Liu, M.; Zheng, B.; Li, S.;
Zhu, K.; Wu, L.; Yu, Y.; Gibson, H. W.; Huang, F. Angew. Chem., Int. Ed.
2010, 49, 1090–1094.
(5) (a) Nguyen, T. D.; Liu, Y.; Saha, S.; Leung, K. C. F.; Stoddart, J. F.;
Zink, J. I. J. Am. Chem. Soc. 2007, 129, 626–634. (b) Saha, S.; Leung, K. C. F.;
Nguyen, T. D.; Stoddart, J. F.; Zink, J. I. Adv. Funct. Mater. 2007, 17, 685–693.
(6) Li, J.; Yang, C.; Li, H.; Wang, X.; Goh, S. H.; Ding, J. L.; Wang,
D. Y.; Leong, K. W. Adv. Mater. 2006, 18, 2969–2974.
3 3
disassembled by Kþ, the effect of randomly diffusional collision
was a predominant factor between donors and acceptors, result-
ing in the recovery of the lanthanide luminescent emission
(Scheme 2c). Since the donors and acceptors must be in close
proximity to achieve the effective PET, it can be seen that the
noncovalent interactions play a crucial role in the intramolecular
electron transfer process that draw the donor and acceptor
chromophores much closer.
In conclusion, a DB24C8 derivative bearing one terpyridine unit
(1) was synthesized, and its coordination to Tb3þ displayed a
satisfactory luminescent emission as a result of ET from ligand to
lanthanide ions. Furthermore, [2]pseudorotaxane [Tb 1 2]3þ was
3 3
constructed by fullerene-containing ammonium salt (2) and
[1 Tb]3þ, giving an intramolecular PET process with the highly
3
efficient quenching of the singlet excited state of [1 Tb]3þ. It is
3
significant that the PET process could be reversibly controlled by
the binding and release of the cationic guests. Consequently, these
obtained results may provide a novel perspective for the design of
the molecular machines based on relatively complex interlocking
systems with controlled photophysical behaviors.
’ EXPERIMENTAL SECTION
Preparation of 40-[4-(4-Hydroxymethyldibenzo-24-crown-
8)phenyl]-2,20:60,200-terpyridine (1). Compound 4 (65 mg, 0.2
mmol) was dissolved in dry DMF (20 mL), and to this solution were
added 4-chloromethyldibenzo-24-crown-8 (100 mg, 0.2 mmol) and
K2CO3 (55.2 mg, 0.4 mmol). The resulting mixture was kept under reflux
in an inert atmosphere for 24 h. The reaction mixture was evaporated to
dryness, the residue was partitioned between CH2Cl2 (50 mL) and H2O
(50 mL), and the aqueous layer was extracted with CH2Cl2 (3 ꢀ 50 mL).
The combined organic extracts were dried with Na2SO4, filtered under
vacuum, and evaporated to dryness. The crude product was purified by flash
column chromatography (SiO2) eluting with EtOAc to afford 1 as a white
solid (113 mg, 72%): 1H NMR (400 MHz, CDCl3, 298 K) δ 3.84 (m, 8H),
3.90-3.95 (m, 8H), 4.12-4.20 (m, 8H), 5.03 (s, 2H), 6.83-6.92 (m, 5H),
6.99 (d, 2H), 7.09 (d, 2H), 7.35 (t, 2H), 7.84-7.92 (m. 4H), 8.64-8.75
(m, 6H); 13C NMR (CDCl3) δ 69.5, 69.9, 71.3, 113.7, 114.0, 114.2, 115.3,
118.3, 120.8, 121.4, 123.8, 128.5, 129.8, 131.0, 136.7, 149.1, 149.7, 155.8,
156.4, 159.8; ESI-MS m/z808.32 [M þ Na]þ. Anal. Cald for C46H47N3O9:
C, 70.30; H, 6.03; N, 5.35. Found: C, 69.88; H, 5.94; N, 5.14.
(7) (a) Liu, Y.; Yu, Y.; Gao, J.; Wang, Z.; Zhang, X. Angew. Chem., Int.
Ed. 2010, 49, 6576–6579. (b) Wang, C.; Chen, Q.; Xu, H.; Wang, Z.;
Zhang, X. Adv. Mater. 2010, 22, 2553–2555.
(8) Chiang, P.-T.; Cheng, P.-N.; Lin, C.-F.; Liu, Y.-H.; Lai, C.-C.;
Peng, S.-M.; Chiu, S.-H. Chem.—Eur. J. 2006, 12, 865–876.
(9) Ferrer, B.; Rogez, G.; Credi, A.; Ballardini, R.; Gandolfi, M. T.;
Balzani, V.; Liu, Y.; Tseng, H.-R.; Stoddart, J. F. Proc. Natl. Acad. Sci. U.S.A.
2006, 103, 18411–18416.
(10) Wessendorf, F.; Grimm, B.; Guldi, D. M.; Hirsch, A. J. Am.
Chem. Soc. 2010, 132, 10786–10795.
(11) Han, M.; Zhang, H.-Y.; Yang, L.-X.; Jiang, Q.; Liu, Y. Org. Lett.
2008, 10, 5557–5560.
(12) Jiang, Q.; Zhang, H.-Y.; Han, M.; Ding, Z.-J.; Liu, Y. Org. Lett.
2010, 12, 1728–1731.
(13) (a) Yoo, D.-W.; Yoo, S.-K.; Kim, C.; Lee, J.-K. J. Chem. Soc.,
Dalton Trans. 2002, 3931–3932. (b) Anthonysamy, A.; Balasubramanian,
S.; Shanmugaiah, V.; Mathivanan, N. Dalton Trans. 2008, 2136–2143.
(14) (a) Bingel, C.Chem. Ber. 1993, 126, 1957–1959. (b) Nierengarten,
J. F.; Gramlich, V.; Cardullo, F.; Diederich, F. Angew. Chem., Int. Ed. 1996,
35, 2101–2103.
(15) Mizukami, S.; Kikuchi, K.; Higuchi, T.; Urano, Y.; Mashima, T.;
Tsuruo, T.; Nagano, T. FEBS Lett. 1999, 453, 356–360.
’ ASSOCIATED CONTENT
Supporting Information. Characterizations of 1, 1H
(16) (a) Guldi, D. M.; Prato, M. Acc. Chem. Res. 2000, 33, 695–703.
(b) Prato, M. J. Mater. Chem. 1997, 7, 1097–1109. (c) Mateo-Alonso, A.;
Sooambar, C.; Prato, M. Org. Biomol. Chem. 2006, 4, 1629–1637.
(d) Mateo-Alonso, A. Chem. Commun. 2010, 46, 9089–9099.
(17) (a) Shunmugam, R.; Gabriel, G. J.; Aamer, K. A.; Tew, G. N.
Macromol. Rapid Commun. 2010, 31, 784–793. (b) Bekiari, V.; Lianos, P.
Chem. Phys. Lett. 2004, 383, 59–61.
S
b
NMR titration of 1 and 2, Job’s plots of 1/Tb3þ system,
electrochemical data of [Tb 1]3þ and 2, the optimized molecule
3
modulation of [2]pseudorotaxane [Tb 1 2]3þ, and the control
3 3
experiments. This material is available free of charge via the
(18) (a) Zhou, Z.; Sarova, G. H.; Zhang, S.; Ou, Z.; Tat, F. T.; Kadish,
K. M.; Echegoyen, L.; Guldi, D. M.; Schuster, D. I.; Wilson, S. R. Chem.—
Eur. J. 2006, 12, 4241–4248. (b) Armspach, D.; Constable, E. C.; Diederich,
F.; Housecroft, C. E.; Nierengarten, J.-F. Chem.—Eur. J. 1998, 4, 723–733.
(c) Schubert, U. S.; Eschbaumer, C.; Hienb, O.; Andresa, P. R. Tetrahedron
Lett. 2001, 42, 4705–4707. (d) Fu, K.; Henbest, K.; Zhang, Y. J.; Valentin, S.;
Sun, Y.-P. J. Photochem. Photobiol., A 2002, 150, 143–152.
(19) Terai, T.; Kikuchi, K.; Iwasawa, S. -Y.; Kawabe, T.; Hirata, Y.;
Urano, Y.; Nagano, T. J. Am. Chem. Soc. 2006, 128, 6938–6946.
(20) Zhang, Y.-M.; Chen, Y.; Yang, Y.; Liu, P.; Liu, Y. Chem.—Eur. J.
2009, 15, 11333–11340.
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: yuliu@nankai.edu.cn.
’ ACKNOWLEDGMENT
This work was supported by the 973 Program (2011CB932500)
and NNSFC (Nos. 20932004 and 20972077), which are gratefully
acknowledged.
1913
dx.doi.org/10.1021/jo102311m |J. Org. Chem. 2011, 76, 1910–1913