5
Scheme 3. Possible pathway
spectroscopy, was 3h, which arises from reaction of phenyl bromide 2d with an electronwithdrawing group. The
result from the competition experiment indicates that, relative to phenyl bromides with electron-donating groups,
phenyl bromides with electron-withdrawing groups should have higher reactivity and show a higher reaction rate in
the formation of intermediate 1 in Scheme 3 for the direct arylation in this system.
Despite the rather fragmented information on the mechanism at present, We propose that the direct arylation
reaction proceeds through a plausible reaction mechanism similar to the typical mechanism of the direct arylation
reaction of pyridine N-oxide [9]. The reaction was proposed to involve a concerted metalation-deprotonation (CMD)
mechanism for the C–H activation step as shown in Scheme 3. Further studies are needed to understand the
mechanism of arylation reaction of 1-benzyl-1,2,3-triazole. Although a few reports have developed the synthesis of 1-
benzyl-5-aryl-1,2,3-triazoles with low yield and site-selectivity [10], this protocol can provide an valuable alternative
for the synthesis of 1-benzyl-5-aryl-1,2,3-triazoles.
Conclusion
In conclusion, we repeorted an efficient microwave assisted coupling between 1-benzyl-1,2,3-triazoles and
arylhalides in synthesizing 1-benzyl-5-aryl-1,2,3-triazoles. The method provided a useful alternative for synthesis of
1-benzyl-5-aryl-1,2,3-triazoles in organic chemistry and medical chemistry.
Acknowledgements
This work was supported by the Nantong University for Returned Overseas Chinese Scholars (17R37) and
Zhejiang Province Pinghu Leading Academic Discipline Project (2018).
Supplementary data
1
Supplementary data (Experimental details, H NMR data and spectra, 13C NMR data and spectra, FT-IR data and
References and notes
[1]. (a) Chabre. Y. M, Roy. R, Curr. Top. Med. Chem..8 ( 2008) 1237-1241.
(b) Hanselmann. R., Job. G. E, Johnson. G, Lou. R. L, Martynow. J. G, Reeve. M. M, Org. Process. Res. Dev. 15 (2011) 367-375.
(c) Colombo. M, Peretto. I, Drug. Discovery.Today. 13 (2008) 677-681.
(d) Hanselmann. R, Job. G. E, Johnson. G, Lou. R. L, Martynow. J. G, Reeve. M. M, Org. Process Res. Dev. 14 (2010) 152-155.
[2]. (a) Chan. T. R, Hilgraf. R, Sharples.. K. B, Fokin. V. V, Org. Lett. 6 (2004) 2853-2856.
(b) Liu. D, Gao. W. Z, Dai. Q, Zhang. X. M, Org. Lett. 7 (2005) 4907-4910.
(c)Yeung. C. S, Dong. V. M, Chem.. Rev. 111 (2011) 1215-1292.
(d) Duan. H, Sengupta. S, Petersen. J. L, Shi. X, Organometallics. 28 (2009) 2352-2355.
[3]. (a)Guo. X. Q, Zhu. X. H, Zhong. R, Cai. L. H, Hou. X. F, Chem. Commun. 48 (2012), 10437-10439.
(b)Ackermann. L, Pure Appl. Chem.. 82 (2010) 1403-1413.
(c) Hirano. K, Miura. M, Synlett. 3 (2011) 294-307.
[4]. (a)Sharma. P, Vallabhapurapu. S. V, Ho. W. H, Hemmaragala. N. M, Canadian. Journal. of . Chemistry. 97 (2019) 163-168.
(b)Luz. I, Llabres. I, Xamena. F. X, Corma. A, Journal. of .Catalysis. 276 (2010), 134-140.
[5]. (a)Campeau. L. C, Rousseaux. S, Fagnou. K, J. Am. Chem. Soc. 127 (2005) 18020-18023.
(b) Leclerc. J. P, Fagnou. K, Angew. Chem., Int. Ed. 45 (2006) 7781-7784.
(c)Fu. X. P, Xuan. Q. Q, Liu. L, Wang. D, Chen. Y.J, Li. C. J, Tetrahedron. 69 (2013) 4436-4439.
[6]. Chuprakov. S, Chernyak. N, Dudnik. A, Gevorgyan. V, Org. Lett. 2007, 9, 2333-2336.
[7]. Benoıt. L, David. L, Laurence. C, Anna. V, Fagnou. K, J. Org. Chem., 74 (2010) 1826-1829.