ꢁ
3 C. F. C. Fitie, I. Tomatsu, D. Byelov, W. H. de Jeu and
R. P. Sijbesma, Chem. Mater., 2008, 20, 2394–2404.
4 K. Hanabusa, C. Koto, M. Kimura, H. Shirai and A. Kakehi, Chem.
Lett., 1997, 429–430.
peaks.) FT-IR: n ¼ 3231, 3064, 2956, 2924, 2855, 1746, 1636, 1556,
1498, 1466, 1456, 1440, 1366, 1301, 1198, 1170, 739, 723, 699 cmꢁ1.
MALDI-TOF-MS: calculated M ¼ 691.49 g molꢁ1, observed m/z ¼
714.36 [M + Na]+, 692.36 [M + H]+ g molꢁ1. Elemental analysis:
C42H65N3O5 (691.98). Calcd: C: 72.90, H: 9.47, N: 6.07; obs: C:
72.65, H: 9.38, N: 5.97%.
5 D. Ogata, T. Shikata and K. Hanabusa, J. Phys. Chem. B, 2004, 108,
15503–15510.
6 M. P. Lightfoot, F. S. Mair, R. G. Pritchard and J. E. Warren, Chem.
Commun., 1999, 1945–1946.
7 J. J. van Gorp, J. A. J. M. Vekemans and E. W. Meijer, J. Am. Chem.
Soc., 2002, 124, 14759–14769.
8 L. Brunsveld, A. P. H. J. Schenning, M. A. C. Broeren, H. M. Janssen,
J. A. J. M. Vekemans and E. W. Meijer, Chem. Lett., 2000, 292–
293.
9 M. M. J. Smulders, I. A. W. Filot, J. M. A. Leenders, P. van der
Schoot, A. R. A. Palmans, A. P. H. J. Schenning and E. W. Meijer,
J. Am. Chem. Soc., 2010, 132, 611–619.
10 M. M. J. Smulders, P. J. M. Stals, T. Mes, T. F. E. Paffen,
A. P. H. J. Schenning, A. R. A. Palmans and E. W. Meijer, J. Am.
Chem. Soc., 2010, 132, 620–626.
11 T. F. A. de Greef, M. M. J. Smulders, M. Wolffs,
A. P. H. J. Schenning, R. P. Sijbesma and E. W. Meijer, Chem.
Rev., 2009, 109, 5687–5754.
12 P. J. M. Stals, J. C. Everts, R. de Bruijn, I. A. W. Filot,
M. M. J. Smulders, R. Martin-Rapun, E. A. Pidko, T. E. A. de
Greef, A. R. A. Palmans and E. W. Meijer, Chem.–Eur. J., 2010,
16, 810–821.
N,N0,N00-Tris[(S)-(benzyl)octyloxycarbonylmethyl]benzene-
1,3,5-tricarboxamide ((S,S,S)-4). BTA (S,S,S)-4 was prepared
according to a literature procedure19 using freshly prepared (S)-
phenylalanine octyl ester and commercially available benzene-
1,3,5-tricarbonyl trichloride to give the product in 70% yield.
1H-NMR (DMSO-d6) d: 9.13 (d, 3H, J ¼ 7.6 Hz, –CONH–), 8.40
(s, 3H, –ArH (core)), 7.32–7.22 (m, 12H, –Ph (Phe)), 7.22–7.16
(m, 3H, –Ph (Phe)), 4.68 (ddd, H, J ¼ 7.6, 6.0, 6.0 Hz, –CON-
HCHRR0–), 4.02 (t, 6H, J ¼ 6.4 Hz, –COOCH2–), 3.16–3.10 (m,
6H, –CH2Ph), 1.55–1.42 (m, 6H, –COOCH2CH2–), 1.28–1.10
(m, 30H,–CH2–), 0.82 (t, 9H, J ¼ 6.7 Hz, –CH3) ppm. 13C-NMR
(DMSO-d6) d: 171.4, 165.4, 137.5, 134.1, 129.2, 128.9, 128.2,
126.4, 64.5, 54.5, 39.5, 36.2, 31.1, 28.5, 28.5, 28.0, 25.2, 22.0, 13.9
ppm. FT-IR: n ¼ 3231, 3063, 3030, 2954, 2926, 2856, 1742, 1638,
ꢁ
ꢁ
13 P. J. M. Stals, M. M. J. Smulders, R. Martın-Rapun, A. R. A. Palmans
and E. W. Meijer, Chem.–Eur. J., 2009, 15, 2071–2080.
14 M. M. J. Smulders, A. P. H. J. Schenning and E. W. Meijer, J. Am.
Chem. Soc., 2008, 130, 606–611.
1558, 1497, 1456, 1363, 1325, 1197, 1168, 1109, 739, 698 cmꢁ1
.
MALDI-TOF-MS: calculated M ¼ 987.60 g molꢁ1, observed m/
z ¼ 1010.55 [M + Na]+, 988.55 [M + H]+ g molꢁ1. Elemental
analysis: C60H81N3O9 (988.30). Calcd: C: 72.92, H: 8.26, N: 4.25;
obs: C: 72.68, H: 8.35, N: 4.17%.
ꢁ
ꢁ
15 K. P. van den Hout, R. Martın-Rapun, J. A. J. M. Vekemans and
E. W. Meijer, Chem.–Eur. J., 2007, 13, 8111–8123.
16 A. R. A. Palmans, J. A. J. M. Vekemans, E. E. Havinga and
E. W. Meijer, Angew. Chem., Int. Ed. Engl., 1997, 36, 2648–2651.
17 I. A. W. Filot, E. A. Pidko, A. R. A. Palmans, E. W. Meijer, R. A. van
Santen and T. F. A. de Greef, J. Phys. Chem. B., 2010, DOI: 10.1021/
jp1072928.
18 P. P. Bose, M. G. B. Drew, A. K. Das and A. Banerjee, Chem.
Commun., 2006, 3196–3198.
19 M. de Loos, J. H. van Esch, R. M. Kellogg and B. L. Feringa,
Tetrahedron, 2007, 63, 7285–7301.
20 M. M. Green, J. W. Park, T. Sato, A. Teramoto, S. Lifson,
R. L. B. Selinger and J. V. Selinger, Angew. Chem., Int. Ed., 1999,
38, 3139–3154.
21 J. van Gestel, A. R. A. Palmans, B. Titulaer, J. A. J. M. Vekemans
and E. W. Meijer, J. Am. Chem. Soc., 2005, 127, 5490–5494.
22 M. Kasha, H. R. Rawls and M. A. El-Bayoumi, Pure Appl. Chem.,
1965, 11, 371–392.
23 M. M. J. Smulders, M. M. L. Nieuwenhuizen, T. F. A. De Greef,
P. van der Schoot, A. P. H. J. Schenning and E. W. Meijer,
Chemistry, 2010, 16, 362–367.
24 M. M. J. Smulders, I. A. W. Filot, J. M. A. Leenders, P. van der
Schoot, A. R. A. Palmans, A. P. H. J. Schenning and E. W. Meijer,
J. Am. Chem. Soc., 2009, 132, 611–619.
25 M. M. J. Smulders, P. J. M. Stals, T. Mes, T. F. E. Paffen,
A. P. H. J. Schenning, A. R. A. Palmans and E. W. Meijer, J. Am.
Chem. Soc., 2009, 132, 620–626.
26 J. van Gestel, P. van der Schoot and M. A. J. Michels,
Macromolecules, 2003, 36, 6668–6673.
27 To exclude slow kinetics upon mixing, a solution with 58% ee was
annealed for 3 h at 90 ꢂC and cooled again to 20 ꢂC. No differences
in the magnitude or shape of the CD effect were observed before
and after annealing of the solution.
28 Depending on the wavelength at which the CD effect is monitored, the
shape of the titration curves can vary. This is a direct result of the
different shape of the CD spectra.
N,N0,N00-Tris[(R)-(benzyl)octyloxycarbonylmethyl]benzene-
1,3,5-tricarboxamide ((R,R,R)-4). BTA (R,R,R)-4 was synthe-
sized according to the procedure for the enantiomer using equal
amounts of reactants. Pure BTA (R,R,R)-4 was obtained as
a sticky white solid (1.80 g, 83%). 1H-NMR (DMSO-d6) d: 9.13 (d,
3H, J ¼ 7.7 Hz, –CONH–), 8.40 (s, 3H, –ArH (core)), 7.32–7.22
(m, 12H, –Ph (Phe)), 7.22–7.14 (m, 3H, –Ph (Phe)), 4.68 (ddd, H,
J ¼ 7.6, 6.0, 6.0 Hz, –CONHCHRR0–), 4.02 (t, 6H, J ¼ 6.4 Hz,
–COOCH2–), 3.19–3.08 (m, 6H, –CH2Ph), 1.55–1.42 (m, 6H,
–COOCH2CH2–), 1.30–1.11 (m, 30H, –CH2–), 0.82 (t, 9H, J ¼ 6.8
Hz, –CH3) ppm. 13C-NMR (DMSO-d6) d: 171.4, 165.4, 137.5,
134.1, 129.2, 128.9, 128.2, 126.4, 64.5, 54.5, 36.2, 31.1, 28.5, 28.5,
27.9, 25.2, 22.0, 13.9 ppm. FT-IR: n ¼ 3231, 3063, 3030, 2954,
2926, 2856, 1742, 1639, 1558, 1497, 1456, 1364, 1326, 1197, 1168,
1109, 739, 699 cmꢁ1. MALDI-TOF-MS: calculated M ¼ 987.60 g
molꢁ1, observed m/z ¼ 1010.49 [M + Na]+, 988.49 [M + H]+
g
molꢁ1. Elemental analysis: C60H81N3O9 (988.30). Calcd: C: 72.92,
H: 8.26, N: 4.25; obs: C: 72.74, H: 8.19, N: 4.05%.
Acknowledgements
M.V. and A.P. thank Council for the Chemical Sciences of the
Netherlands Organization for Scientific Research (CW-NWO)
for financial support.
References and notes
29 Annealing of a sample containing 55% (S,S,S)-4 for 2 h at 90 ꢂC did
not show any difference in either the size or shape of the observed CD-
spectra compared to the non-annealed sample, thereby showing the
instantaneous spectral changes upon mixing.
1 M. Kristiansen, P. Smith, H. Chanzy, C. Baerlocher, V. Gramlich,
L. McCuskcr, T. Weber, P. Pattison, M. Blomenhofer and
H. W. Schmidt, Cryst. Growth Des., 2009, 9, 2556–2558.
30 The exact structure of the 1 : 1 heterocomplex formed between
(S,S,S)-4 and (octyl)3 BTA is unknown.
ꢀ
2 J. Roosma, T. Mes, P. Leclere, A. R. A. Palmans and E. W. Meijer,
J. Am. Chem. Soc., 2008, 130, 1120–1121.
This journal is ª The Royal Society of Chemistry 2011
Soft Matter, 2011, 7, 524–531 | 531