306
L.T. Sein Jr., J.M. Pagillo / Journal of Molecular Structure 985 (2011) 299–306
2555–2564;
and H ? L + 1 (second lowest unoccupied molecular orbital,
277 nm). Oxygenated amino-terminated quinonediimines, on the
other hand, show primarily a H ꢀ 1 (second highest occupied
molecular orbital) ? L transition. RQD acts more like the unsubsti-
tuted amino-terminated quinonediimine than the hydroxyl-termi-
nated one, even though both RQD and the hydroxyl-terminated
quinonediimine are ‘‘oxygenated’’. The effect of amino and hydro-
xyl substitutions on the character of the most intense electronic
transitions is very subtle, as seen by comparison among such tri-
mers with the substituents slightly rearranged. The frontier orbi-
tals of RQD are displayed in Fig. 6.
(e) M.T. Greiner, M. Festin, P. Kruse, J. Phys. Chem. C 112 (2008) 18991–19004;
(f) Y. Guo, M. Li, A. Mylonakis, J. Han, A.G. MacDiarmid, X. Chen, P.I. Lelkes, Y.
Wei, Biomacromolecules 8 (2007) 3025–3034.
[4] (a) F.E. Dayan, A.M. Rimando, Z. Pan, S.R. Baerson, A.L. Gimsing, S.O. Duke,
Phytochemistry 71 (2010) 1032–1039;
(b) M. Matsuzawa, Y. Katsuyama, N. Funa, S. Horinouchi, Phytochemistry 71
(2010) 1059–1067.
[5] (a) M. Khan, V. Enkelmann, G. Brunklaus, Cryst. Growth Des. 9 (2009) 2354–
2362;
(b) T. Friscic, T.D. Hamilton, G.S. Papaefstathiou, L.R. MacGillivray, J. Chem. Ed.
82 (2005) 1679;
(c) R.L. Halterman, D.E. Martyn, J. Org. Chem. 72 (2007) 7841–7848;
(d) A.N. Sokolov, T. Frišic, L.R. MacGillivray, J. Am. Chem. Soc. 128 (2006) 2806–
2807.
´
[6] A.P. Scott, L. Radom, J. Phys. Chem. 100 (1996) 16502–16513.
[7] (a) R. Ditchfield, W.J. Hehre, J.A. Pople, J. Chem. Phys. 54 (1971) 724;
(b) W.J. Hehre, R. Ditchfield, J.A. Pople, J. Chem. Phys. 56 (1972)
2257;
(c) P.C. Hariharan, J.A. Pople, Theor. Chem. Acc. 28 (1973) 213–222.
[8] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.
5. Conclusions
The resorcinol quinonediimine has been synthesized, and its
experimental and theoretical investigation enables a deeper under-
standing of subtle electronic and steric effects in amino- and hy-
droxyl-terminated quinonediimines. The hydroxyl group at the 20
position exerts two distinct effects on the compound. On one hand,
it reinforces the electron withdrawing effect of the hydroxyl group
at the 40 position by electronegativity, while it counteracts its with-
drawal of electron density by resonance. On the other hand, it
destabilizes any isomers in which it closely approaches the imine
nitrogen, so that if the isomers are Boltzmann distributed, at room
temperature all molecules should be in the enthalpically favored sa
isomer. This suggests that structural factors could be used to more
efficiently engineer quinonediimines with desired electronic
properties.
[9] Gaussian 03, Revision C.02, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria,
M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C.
Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G.
Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R.
Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M.
Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J.
Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C.
Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J.
Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas,
D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G.
Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I.
Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A.
Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong,
C. Gonzalez, J.A. Pople, Gaussian, Inc., Wallingford, CT, 2004.
[10] (a) A.D. McLean, G.S. Chandler, J. Chem. Phys. 72 (1980) 5639–5648;
(b) K. Raghavachari, J.S. Binkley, R. Seeger, J.A. Pople, J. Chem. Phys. 72 (1980)
650–654.
[11] (a) E.R. Davidson, D. Feller, Chem. Rev. 86 (1986) 681–696l;
(b) Exploring Chemistry with Electronic Structure Methods: A Guide to Using
Gaussian, second ed. J.B. Foresman, Æ. Frisch, Gaussian, Pittsburgh, 1996.;
(c) J.-W. Pan, D.W. Rogers, F.J. McLafferty, J. Mol. Struct. (Theochem) 1–2
(1999) 59–66.
[12] U. Salzner, P.G. Pickup, R.A. Poirier, J.B. Lagowski, J. Phys. Chem. A 102 (1998)
2572.
[13] J.B. Foresman, M. Head-Gordon, J.A. Pople, M.J. Frisch, J. Phys. Chem. 96 (1992)
135.
References
[1] (a) W. Li, H.-L. Wang, J. Am. Chem. Soc. 126 (2004) 2278–2279;
(b) X.-G. Li, M.-R. Huang, W.D.Y.-L. Yang, Chem. Rev. 102 (2002) 2925–3030;
(c) Y. Wei, J. Chem. Ed. 78 (2001) 551;
´
ˇ
´
(d) M. Trchová, I. Šedenková, E.N. Konyushenko, J. Stejskal, P. Holler, G. Ciric-
Marjanovic´, J. Phys. Chem. B 110 (2006) 9461–9468;
(e) H. Sakurai, M. T.S. Ritonga, H. Shibatani, T. Hirao, J. Org. Chem. 70 (2005)
2754–2762;
[14] (a) R. Bauernschmitt, R. Ahlrichs, Chem. Phys. Lett. 256 (1996) 454–464;
(b) M.E. Casida, C. Jamorski, K.C. Casida, D.R. Salahub, J. Chem. Phys. 108 (1998)
4439–4449;
(f) J.P. Foreman, A.P. Monkman, J. Phys. Chem. A 107 (2003) 7604–7610.
[2] (a) S.A. Jansen, T. Duong, A. Major, Y. Wei, L.T. Sein Jr., Synth. Met. 105 (1999)
107;
(c) R.E. Stratmann, G.E. Scuseria, M.J. Frisch, J. Chem. Phys. 109 (1998) 8218–
82124;
(b) L.T. Sein Jr., Y. Wei, S.A. Jansen, Synth. Met. 108 (2000) 101;
(c) L.T. Sein Jr., Y. Wei, S.A. Jansen, J. Phys. Chem. A 104 (2000) 11371;
(d) L.T. Sein Jr., T. Duong, Y. Wei, S.A. Jansen, Synth. Met. 113 (2000) 145;
(e) L.T. Sein Jr., Y. Wei, S.A. Jansen, Compos. Theor. Polym. Sci. 11 (2001) 83;
(f) L.T. Sein Jr., Y. Wei, S.A. Jansen, Synth. Met. 126 (2002) 117;
(g) L.T. Sein Jr., Y. Wei, S.A. Jansen, J. Mol. Struct. (Theochem) 577 (2002) 35;
(h) L.T. Sein Jr., Y. Wei, S.A. Jansen, Synth. Met. 143 (2004) 1;
(i) L.T. Sein Jr., J. Phys. Chem. A 112 (2008) 2598;
(d) C. Van Caillie, R.D. Amos, Chem. Phys. Lett. 308 (1999) 249–255;
(e) C. Van Caillie, R.D. Amos, Chem. Phys. Lett. 317 (2000) 159–164;
(f) F. Furche, R. Ahlrichs, J. Chem. Phys. 117 (2002) 7433–7447;
(g) G. Scalmani, M.J. Frisch, B. Mennucci, J. Tomasi, R. Cammi, V. Barone, J.
Chem. Phys. 124 (2006) 094107: 1–094107: 15.
[15] (a) J.E. Ridley, M.C. Zerner, Theo. Chim. Acta 32 (1973) 111;
(b) A.D. Bacon, M.C. Zerner, Theo. Chim. Acta 53 (1979) 21;
(c) M.C. Zerner, G.H. Lowe, R.F. Kirchner, U.T. Mueller-Westerhoff, J. Am. Chem.
Soc. 102 (1980) 589;
(d) W.P. Anderson, W.D. Edwards, M.C. Zerner, Inorganic Chem. 25 (1986)
2728.
[16] J.B. Foresman, T.A. Keith, K.B. Wiberg, J. Snoonian, M.J. Frisch, J. Phys. Chem.
100 (1996) 16098.
(j) L.T. Sein Jr., A.F. Lashua, Synth. Met. 159 (2009) 1183–1190;
(k) L.T. Sein Jr., A.F. Lashua, J. Mol. Struct. 977 (2010) 220–229.
[3] (a) M.M. Wienk, R.A.J. Janssen, J. Am. Chem. Soc. 119 (1997) 4492–4501;
(b) P.L. Franzen, L. De Boni, D.S. Santos Jr., C.R. Mendonça, S.C. Zílio, J. Phys.
Chem. B 108 (2004) 19180–19183;
(c) A.K. Flatt, B. Chen, P.G. Taylor, M. Chen, J.M. Tour, Chem. Mater. 18 (2006)
4513–4518;
(d) A.N. Ivanova, A.V. Tadjer, N.P. Gospodinova, J. Phys. Chem. B 110 (2006)