302
K. S. Lim et al. / Bioorg. Med. Chem. Lett. 21 (2011) 299–302
Figure 2. The lowest energy conformers of (A) RTX and I-RTX, and (B) 36 and 39. Carbon atoms are shown in green for RTX, white for I-RTX, purple for 36 and pink for 39.
Agonists RTX and 36 are depicted as ball-and-stick. Antagonists I-RTX and 39 are depicted as capped stick. Hydrogen bonds are displayed in black dashed lines, and non-polar
hydrogens are undisplayed for clarity.
12. Acs, G.; Lee, J.; Marquez, V. E.; Wang, S.; Milne, G. W. A.; Lewin, N. E.; Blumberg,
P. M. J. Neurochem. 1995, 65, 301.
13. Walpole, C. S. J.; Bevan, S.; Bloomfield, G.; Breckenridge, R.; James, I. F.; Ritchie,
extended conformation of RTX agonists, should fail to induce the
shift in the conformation of the tetrameric TRPV1 channel associ-
ated with channel opening. This model thus suggests novel strate-
gies for antagonist design.
In conclusion, we have systematically modified the aromatic A-
region of RTX and its 4-amino surrogate by halogenation at the 5-
position in order to explore the role of halogens in the reversal of
activity from agonism to antagonism. 5-Halogenation converted
the agonists to partial or full antagonists, and the extent of antag-
onism reflected the order of I > Br > Cl > F. Antagonism was further
favored in derivatives of the 4-amino RTX surrogate compared to
derivatives of RTX itself. Of particular note, the 5-bromo 4-amino
T.; Szallasi, A.; Winter, J.; Wrigglesworth, R. J. Med. Chem. 1996, 39, 2939.
14. Appendino, G.; Cravotto, G.; Palmisano, G.; Annunziata, R.; Szallasi, A. J. Med.
Chem. 1996, 39, 3123.
15. Acs, G.; Lee, J.; Marquez, V. E.; Blumberg, P. M. Mol. Brain Res. 1996, 35, 173.
16. Wahl, P.; Foged, C.; Tullin, S.; Thomsen, C. Mol. Pharmacol. 2001, 59, 9. Iodo-
RTX.
17. Seabrook, G. R.; Sutton, K. G.; Jarolimek, W.; Hollingworth, G. J.; Teague, S.;
Webb, J.; Clark, N.; Boyce, S.; Kerby, J.; Ali, Z.; Chou, M.; Middleton, R.;
Kaczorowski, G.; Jones, A. B. J. Pharmacol. Exp. Ther. 2002, 303, 1052.
18. McDonnell, M. E.; Zhang, S.-P.; Dubin, A. E.; Dax, S. L. Bioorg. Med. Chem. Lett.
2002, 12, 1189.
19. Appendino, G.; Ech-Chahad, A.; Minassi, A.; Bacchiega, S.; De Petrocellis, L.; Di
Marzo, V. Bioorg. Med. Chem. Lett. 2007, 17, 132.
20. Choi, H.-K.; Choi, S.; Lee, Y.; Kang, D. W.; Ryu, H.; Maeng, H.-J.; Chung, S.-J.;
Pavlyukovets, V. A.; Pearce, L. V.; Toth, A.; Tran, R.; Wang, Y.; Morgan, M. A.;
Blumberg, P. M.; Lee, J. Bioorg. Med. Chem. 2009, 17, 690.
21. Appendino, G.; Ech-Chahad, A.; Minassi, A.; De Petrocellis, L.; Di Marzo, V.
Bioorg. Med. Chem. Lett. 2010, 20, 97.
22. Toth, A.; Blumberg, P. M.; Chen, Z.; Kozikowski, A. P. Mol. Pharmacol. 2004, 65,
282.
23. Stahly, G. P.; Stahly, B. C.; Lilje, K. C. J. Org. Chem. 1984, 49, 579.
24. Wang, Y.; Szabo, T.; Welter, J. D.; Toth, A.; Tran, R.; Lee, J.; Kang, S. U.; Lee, Y.-S.;
Min, K. H.; Suh, Y.-G.; Park, M.-K.; Park, H.-G.; Park, Y.-H.; Kim, H.-D.; Oh, U.;
Blumberg, P. M.; Lee, J. Mol. Pharm. 2002, 62, 947 [published erratum appears
in Mol. Pharmacol. 2003, 63, 958].
25. The 3D structures of the tested compounds were generated with Concord and
energy minimized using an MMFF94s force field and MMFF94 charge until the
rms of the Powell gradient was 0.05 kcal molꢀ1 Aꢀ1 in SYBYL 8.1.1 (Tripos Int.,
St. Louis, MO, USA).
RTX analog (39) was
a potent, full antagonist with Ki
(ant) = 2.81 nM, which was 4.5-fold more potent than I-RTX (2) un-
der our conditions. Molecular modeling of selected agonists and
antagonists demonstrated that the 3-methoxy of the A-region in
agonists remained free to interact with the receptor for agonism,
whereas a 5-halogen in the antagonists favored a bent B-region,
allowing the 3-methoxy to form an intramolecular hydrogen bond
with the C4-hydroxyl of the diterpene.
Acknowledgments
This research was supported by Grant R11-2007-107-02001-0
from the National Research Foundation of Korea (NRF), the Na-
tional Core Research Center (NCRC) program (R15-2006-020) of
MEST and NRF through the Center for Cell Signaling & Drug Discov-
ery Research at Ewha Womans University (to S. Choi), and by the
Intramural Research Program of the National Institutes of Health,
Center for Cancer Research, National Cancer Institute. We thank
numerous research fellows for some of the biological analyses.
The conformational analysis of each compound was performed using SYBYL
Grid Search method (force field: MMFF94s; charges: MMFF94; minimization
method: powell; termination: gradient 0.05 kcal molꢀ1 Aꢀ1
; and max
iterations: 10,000). The torsion angles defined for the Grid Search were C29–
C14–O10–C7, C14–O10–C7–C8, O10–C7–C8–C1 and O1–C16–C33–C34 and
they were altered in 30° increments. 20,736 unique conformers were produced
for each compound. Among them, the lowest energy conformers were selected
and the resulting conformers were superimposed using the Fit Atoms tool in
SYBYL. All computational calculations were undertaken on an IntelÒ XeonTM
Quad-core workstation with Linux Cent OS release 4.6.
References and notes
1. Appendino, G.; Szallasi, A. Life Sci. 1997, 60, 681.
2. Blumberg, P. M.; Szallasi, A.; Acs, G. In Capsaicin in the study of pain; Wood, J. N.,
Ed.; Academic Press: London, 1993; pp 45–62. Chapter 3.
16 17
33
34
3. Hergenhahn, M.; Adolf, W.; Hecker, E. Tetrahedron Lett. 1975, 19, 1595.
4. Adolf, W.; Sorg, B.; Hergenhahn, M.; Hecker, E. J. Nat. Prod. 1982, 45, 347.
5. Szallasi, A.; Blumberg, P. M. Neuroscience 1989, 30, 515.
6. Szallasi, A.; Szabo, T.; Biro, T.; Modarres, S.; Blumberg, P. M.; Krause, J. E.;
Cortright, D. N.; Appendino, G. Br. J. Pharmacol. 1999, 128, 428.
7. Biro, T.; Acs, G.; Acs, P.; Modarres, S.; Blumberg, P. M. J. Investig. Dermatol. Symp.
Proc. 1997, 2, 56.
O
O
O
H
H
8
O
10
7
1
O
29
14
8. Liu, L.; Simon, S. A. Brain Res. 1998, 809, 246.
OH
9. Szallasi, A.; Joo, F.; Blumberg, P. M. Brain Res. 1989, 503, 68.
10. Bley, K. R. Expert Opin. Investig. Drugs 2004, 13, 1445.
11. Brown, D. C.; Iadarola, M. J.; Perkowski, S. Z.; Erin, H.; Shofer, F.; Laszlo, K. J.;
Olah, Z.; Mannes, A. J. Anesthesiology 2005, 103, 1052.
O
O
OH
RTX