The Journal of Organic Chemistry
ARTICLE
1.50ꢀ1.05 (36H), 1.00ꢀ0.72 (br, 9H). 13C NMR (δ, 50 MHz, CDCl3)
169.8, 143.0, 139.9, 139.4, 138.2, 137.0, 136.6, 135.2, 128.0, 127.9, 125.0,
124.8, 124.7, 124.6, 124.5, 124.4, 124.3, 124.2, 123.7, 123.6, 49.6, 31.9, 29.6,
29.3, 27.7, 26.9, 22.7, 14.1. IR (cmꢀ1) 2923.6, 2360.4, 1651.7, 1585.2,
1387.5, 785.9. MALDI-TOF-MS Calcd for C84H87N3O3S9 [M þ H]þ:
1476.19. Found: 1476.66.
This material is available free of charge via the Internet at http://
pubs.acs.org.
’ AUTHOR INFORMATION
Corresponding Author
For the polymer of 5 (TTPA),13 the material was similarly prepared
from monomer 5 in 56% yield. 1H NMR (δ, 200 MHz, CDCl3) 7.95ꢀ
6.45 (10H), 3.90 (br, small), 3.82ꢀ3.25 (br, 2H), 1.81ꢀ1.42 (br, 2H),
1.40ꢀ0.96 (12H), 0.92ꢀ0.72 (br, 3H). IR (cmꢀ1) 2923, 2360, 1647,
1583, 789. GPC (THF, PSt standard) Mn = 7000, Mw/Mn = 1.45.
3. Synthesis of Model Compound. 3-(N-Nonyl-N-benzoyla-
mino)-5-bromo-N0-methylbenzanilide (6) A pyridine (4 mL) solution
of 3 (0.36 g, 1.0 mmol) and BzCl (1.5 mL, 1.2 mmol) was heated at
80 °C for 2 h.25 After pouring into iced-water, the aqueous phase was
extracted with ethyl acetate. The organic phase was washed with 1 M
HCl and subsequently with saturated aq. NaHCO3. From the organic
phase dried over MgSO4, solvents were removed by a rotary evaporator
to obtain methyl 3-(N-nonyl-N-benzoylamino)-5-bromobenzoate as
pale brown viscous oil which was used without further purification. To
a THF (1.6 mL) solution of 3-(N-nonyl-N-benzoylamino)-5-bromobenzo-
ate (0.36 g, 0.78 mmol) and N-methylaniline (86 μL, 0.79 mmol) was
added dropwise LiHMDS (1.0 M in THF, 0.78 mL, 0.78 mmol) at 0 °C,
and the system was stirred for 2 h. After saturated aq. NH4Cl was added, the
aqueous phase was extracted with ethyl acetate. A combined organic phase
was dried over MgSO4 and solvents were removed by a rotary evaporator to
obtain pale brown viscous oil in 0.41 g (98% yield). 1H NMR (δ, 200 MHz,
CDCl3) 7.40ꢀ6.80 (13H), 3.60 (t, J= 8.1 Hz, 2H), 3.44 (s, 3H), 1.50ꢀ1.10
(14H), 0.87 (t, J = 6.5 Hz, 3H).
’ REFERENCES
(1) (a) Lehn, J. M. Supramolecular Chemistry-Concepts and Perspec-
tives; VCH: Weinheim, 1995. (b) Ikeda, A.; Shinkai, S. Chem. Rev. 1997,
97, 1713–1734. (c) Rebek, J., Jr. Acc. Chem. Res. 1999, 32, 278–286.(d)
Steed, J. W.; Atwood, J. L. Supramolecular Chemistry; John Wiley & Sons:
Chichester, 2000.
(2) (a) Jiang, H.; Lꢀeger, J.-M.; Guionneau, P.; Huc, I. Org. Lett. 2004,
6, 2985–2988. (b) Shirude, P. S.; Gillies, E. R.; Ladame, S.; Godde, F.;
Shin-ya, K.; Huc, I.; Balasubramanian, S. J. Am. Chem. Soc. 2007,
129, 11890–11891.
(3) (a) Fernꢀandez-Lꢀopez, S.; Kim, H.-S.; Choi, E. C.; Delgado, M.;
Granja, J. R.; Khasanov, A.; Kraehenbuehl, K.; Long, G.; Weinberger,
D. A.; Wilcoxen, K. H.; Ghadiri, M. R. Nature 2001, 412, 452–455. (b)
Amorín, M.; Castedo, L.; Granja, J. R. J. Am. Chem. Soc. 2003,
125, 2844–2845. (c) Rosenthal-Aizman, K.; Svensson, G.; Undꢀen, A.
J. Am. Chem. Soc. 2004, 126, 3372–3373.
(4) (a) Elhadi, F. E.; Ollis, W. D.; Stoddart, J. F.; Williams, D. J.;
Woode, K. A. Tetrahedron Lett. 1980, 21, 4215–4218. (b) Elhadi, F. E.;
Ollis, W. D.; Stoddart, J. F. J. Chem. Soc., Perkin Trans. 1 1982, 1727–1732.
(c) Azumaya, I.; Kagechika, H.; Yamaguchi, K.; Shudo, K. Tetrahedron Lett.
1996, 37, 5003–5006.
(5) (a) Itai, A.; Toriumi, Y.; Tomioka, N.; Kagechika, H.; Azumaya,
I.; Shudo, K. Tetrahedron Lett. 1989, 30, 6177–6180. (b) Yamaguchi, K.;
Matsumura, G.; Kagechika, H.; Azumaya, I.; Ito, Y.; Itai, A.; Shudo, K.
J. Am. Chem. Soc. 1991, 113, 5474–5475. (c) Itai, A.; Toriumi, Y.; Saito,
S.; Kagechika, H.; Shudo, K. J. Am. Chem. Soc. 1992, 114, 10649–10650.
(d) Saito, S.; Toriumi, Y.; Tomioka, N.; Itai, A. J. Org. Chem. 1995,
60, 4715–4720. (e) Azumaya, I.; Kagechika, H.; Yamaguchi, K.; Shudo,
K. Tetrahedron 1995, 51, 5277–5290.
For 3-(N-nonyl-N-benzoylamino)-5-(20-(50,200-bithienyl))-N0-meth-
ylbenzanilide (BTM), to a THF (5 mL) solution of 6 (0.14 g, 0.25
mmol) and 2-(5, 20-bithienyl)boronic acid24 (0.06 g, 0.25 mmol) were
added 2 M aq K2CO3 (2 mL) and Pd(PPh3)4 (2.8 mg, 2.0 μmol), and
the system was heated to reflux overnight. After the aqueous phase was
extracted with CH2Cl2, a combined organic phase was dried over
MgSO4. Solvents were removed by a rotary evaporator. The crude
product was purified by SiO2 chromatography (CH2Cl2/acetone = 5/1
in volume, Rf = 0.7) followed by washed with hexane to obtain brown
(6) Azumaya, I.; Okamoto, T.; Imabeppu, F.; Takayanagi, H. Tetra-
hedron 2003, 59, 2325–2331.
1
(7) Yokoyama, A.; Maruyama, T.; Tagami, K.; Masu, H.; Katagiri, K.;
Azumaya, I.; Yokozawa, T. Org. Lett. 2008, 10, 3207–3210.
(8) (a) Imabeppu, F.; Katagiri, K.; Masu, H.; Kato, T.; Tominaga,
M.; Therrien, B.; Takayanagi, H.; Kaji, E.; Yamaguchi, K.; Kagechika, H.;
Azumaya, I. Tetrahedron Lett. 2006, 47, 413–416. (b) Masu, H.; Katagiri,
K.; Kato, T.; Kagechika, H.; Tominaga, M.; Azumaya, I. J. Org. Chem.
2008, 73, 5143–5146. Very recently, Azumaya and Tanatani et al.
reported the synthesis and the conformational study of m-calix-
[3]amides carrying various substituents at the meta-position. See(c)
Kakuta, H.; Azumaya, I.; Masu, H.; Matsumura, M.; Yamaguchi, K.;
Kagechika, H.; Tanatani, A. Tetrahedron 2010, 66, 8254–8260.
(9) Noda, T.; Ogawa, H.; Noma, N.; Shirota, Y. J. Mater. Chem.
1999, 9, 2177–2181.
viscous oil in 45 mg (29% yield). H NMR (δ, 200 MHz, CDCl3)
7.40ꢀ6.80 (18H), 3.67 (t, J = 7.8 Hz, 2H), 3.49 (s, 3H), 1.43 (m, 2H),
1.33ꢀ1.10 (12H), 0.87 (t, J= 6.5 Hz, 3H). 13C NMR(δ, 50 MHz, CDCl3)
170.1, 169.0, 144.5, 143.4, 140.6, 137.7, 137.4, 136.9, 135.8, 134.5, 129.6,
129.3, 128.5, 127.8, 126.9, 126.3, 125.7, 124.7, 124.5, 124.4, 123.9, 50.1,
38.3, 31.8, 29.5, 29.3, 29.2, 27.6, 26.8, 22.6, 14.0. IR (cmꢀ1) 3726, 2924,
2360, 1644, 1586, 1494, 1446, 1378, 694. Anal. Found: C, 73.32; H, 6.36;
N, 4.42%. Calcd for C38H40N2O2S2: C, 73.51; H, 6.49; N, 4.51%. HRMS
(EI) Calcd for C38H40N2O2S2: 620.2531. Found: 620.2515.
For 3-(N-nonyl-N-benzoylamino)-5-(20-(50,200,500,2000-terthienyl))-
N0-methylbenzanilide (TTM), the material was similarly prepared from
7 in 57% yield. 1H NMR (δ, 200 MHz, CDCl3) 7.40ꢀ6.80 (20H), 3.67
(t, J = 7.7 Hz, 2H), 3.49 (s, 3H), 1.43 (m, 2H), 1.33ꢀ1.10 (12H), 0.87 (t,
J = 6.6 Hz, 3H). 13C NMR (δ, 50 MHz, CDCl3) 170.1, 169.0, 144.5,
143.5, 140.7, 137.5, 137.3, 136.8, 136.6, 135.8, 135.5, 134.4, 129.6, 129.4,
128.5, 127.8, 126.9, 126.3, 125.8, 124.6, 124.5, 124.4, 124.3, 123.8, 50.1,
38.3, 31.8, 29.5, 29.3, 29.2, 27.6, 26.8, 22.6, 14.1. IR (cmꢀ1) 2924.5,
1645.0, 1583.3, 1374.0, 787.8, 695.2. HRMS (EI) Calcd for C42H42N2O2S3:
702.2408. Found: 702.2389.
(10) Hajlaoui, R.; Horowitz, G.; Garnier, F.; Arce-Brouchet, A.;
Laigre, L; Kassmi, A. E.; Demanze, F.; Kouki, F. Adv. Mater. 1997,
9, 389–391.
(11) (a) Gu, T.; Ceroni, P.; Marconi, G.; Armaroli, N.; Nierengarten,
J.-F. J. Org. Chem. 2001, 66, 6432–6439. (b) Sakai, T.; Satou, T.;
Kaikawa, T.; Takimiya, K.; Otsubo, T.; Aso, Y. J. Am. Chem. Soc. 2005,
127, 8082–8089. (c) Hippius, C.; Schlosser, F.; Vysotsky, M. O.;
B€ohmer, V.; W€urthner, F. J. Am. Chem. Soc. 2006, 128, 3870–3871.
(d) Sinkeldam, R. W.; Hoeben, F. J. M.; Pouderoijen, M. J.; Cat, I. D.;
Zhang, J.; Furukawa, S.; Feyter, S. D.; Vekemans, J. A. J. M.; Meijer, E. W.
J. Am. Chem. Soc. 2006, 128, 16113–16121. (e) Sun, X. H.; Chan, C. S.;
Wong, M. S.; Wong, W. Y. Tetrahedron 2006, 62, 7846–7853. (f) Tsuge,
A.; Hara, T.; Moriguchi, T.; Yamaji, M. Chem. Lett. 2008, 37, 870–871.
(12) Dodalabalapur, A.; Torsi, L.; Katz, H. E. Science 1995,
268, 270–271.
’ ASSOCIATED CONTENT
S
Supporting Information. Spectroscopic data (NMR and
b
MALDI-TOF-MS) of materials. Conformational study of cyclic
trimer BTC3A using VT NMR spectra. Optical properties of
materials bearing bithiophene chromophore in various solvents.
2477
dx.doi.org/10.1021/jo102160x |J. Org. Chem. 2011, 76, 2471–2478