available organocatalysts.1-3 The synthetic utility of these
cycloaddition reactions has been largely demonstrated by
the preparation of biologically active natural products and
pharmaceutically interesting substances.1k During our on-
going investigation on phosphine- and nitrogen-contain-
ing Lewis base catalyzed cyclization reactions of
allenoates, herein, we wish to report an interesting phos-
phine-containing Lewis base catalyzed highly regioselec-
tive [3 þ 2] cycloaddition of isatin derived R,β-unsaturated
diesters with R-allenic ester as well as a novel nitrogen-
containing Lewis base catalyzed [4 þ 2] cycloaddition of
isatin derived R,β-unsaturated diesters with R-allenic ester
in good to excellent yields with high stereoselectivities
under mild conditions. Moreover, these heterocyclic pro-
ducts are the core structure motifs in a variety of natural
alkaloid derivatives such as Calabar alkaloids physostig-
mine and physovenine.4,5
We initially utilized diethyl 2-(1-(tert-butoxycarbonyl)-2-
oxoindolin-3-ylidene)malonate 1a (1.0 equiv) and allenic
ester 2 (1.5 equiv) as the substrates to investigate their
cyclization behavior in toluene at room temperature in the
presence of 20 mol % PBu3. It was found that the [3 þ 2]
cycloaddition reaction took place smoothly to give the
corresponding cyclic products 3a and 4a in 86% total yield
within 2 h and this cyclization is highly regioselective
because the ratio of 3a:4a is 13:1 (Scheme 1 and Table SI-
1 in the Supporting Information, entry 1). Subsequently, we
screened various phosphine catalysts for this reaction, and
Scheme 1. PBu3 and DMAP-Catalyzed Cyclization of 1a with 2
the results are summarized in Table SI-1 in the Supporting
Information. Sterically bulky tri(tert-butyl)phosphine
(PtBu3) and the least nucleophilic phosphine tris(4-
fluorophenyl)phosphine (P(p-FC6H4)3) did not catalyze
this reaction (Table SI-1, entries 3 and 7). Other phosphines
could smoothly promote the reaction under the standard
conditions, affording the corresponding cyclization pro-
ducts 3a and 4a in good total yields along with moderate
regioselectivities (Table SI-1, entries 2, 4-6, and 8-9). The
examination of solvent effects using PBu3 as the catalyst
revealed that, in acetonitrile, no reaction occurred and
toluene is the solvent of choice, giving the cyclic adducts
3a and 4a in higher total yield (Table SI-1, entries 10-14).
Using 10 mol % PBu3 as the catalyst produced the corre-
sponding cyclization products 3a and 4a in 80% total yield
(3a:4a = 9:1) (Table SI-1, entry 15).
Using nitrogen-containing Lewis bases as the catalysts,
we found that no reaction occurred in the presence of 1,8-
diazabicyclo[5,4,0]-7-undecene (DBU) or triethylamine in
toluene (Table SI-2 in the Supporting Information, entries
1 and 2). However, it was surprising to find that, by using
4-N,N-dimethylpyridine (DMAP) (10 mol %) as the cat-
alyst, the reaction of 1a (1.0 equiv) with 2 (2.0 equiv)
produced the corresponding [4 þ 2] cycloaddition product
5a in 70% yield as Z- and E-isomeric mixtures (Z/E = 6:1)
in toluene overnight (12 h) (Table SI-2, entry 3). Increasing
the employed amount of DMAP to 20 mol % afforded 5a
in 76% yield (Z/E = 8:1) (Scheme 1). The screening of
solvent indicated that toluene is still the best solvent,
affording 5a in higher yields (Table SI-2, entries 5-9).
Using 1,4-diazabicyclo[2,2,2]octane (DABCO) (20 mol %)
as the catalyst provided cyclic adduct 5a in 68% yield (Z/E
= 1:2) along with a double bond migrated product 6a in
31% yield (Scheme 2).
(2) For reviews: (a) Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res. 2001,
34, 535. (b) Cowen, B. J.; Miller, J. S. Chem. Soc. Rev. 2009, 38, 3102. (c)
Methot, J. L.; Roush, W. R. Adv. Synth. Catal. 2004, 346, 1035. (d) Wei,
€
Y.; Shi, M. Acc. Chem. Res. 2010, 43, 1005. (e) Nising, C.; Brase, S.
Chem. Soc. Rev. 2008, 37, 1218. (f) Ye, L.-W.; Zhou, J.; Tang, Y. Chem.
Soc. Rev. 2008, 37, 1140. (g) Marinetti, A.; Voituriez, A. Synlett 2010,
174.
(3) Selected papers on the chiral phosphine catalyzed asymmetric
cyclization of allenoates: (a) Fang, Y.-Q.; Jacobsen, E. N. J. Am. Chem.
Soc. 2008, 130, 5660. (b) Zhu, G.; Chen, Z.; Jiang, Q.; Xiao, D.; Cao, P.;
Zhang, X. J. Am. Chem. Soc. 1997, 119, 3836. (c) Xiao, H.; Chai, Z.;
Zheng, C.-W.; Yang, Y.-Q.; Liu, W.; Zhang, J.-K.; Zhao, G. Angew.
Chem., Int. Ed. 2010, 49, 4467. (d) Wilson, J. E.; Fu, G. C. Angew. Chem.,
Int. Ed. 2006, 45, 1426. (e) Wallace, D. J.; Sidda, R. L.; Reamer, R. A. J.
Org. Chem. 2007, 72, 1051. (f) Chung, Y.-K.; Fu, G. C. Angew. Chem.,
Int. Ed. 2009, 48, 2225. (g) Wurz, R. P.; Fu, G. C. J. Am. Chem. Soc.
2005, 127, 12234. (h) Voituriez, A.; Pinto, N.; Neel, M.; Retailleau, P.;
Marinetti, A. Chem.;Eur. J. 2010, 16, 12541. (i) Miyamoto, H.; Okawa,
Y.; Nakazaki, A.; Kobayashi, S. Angew. Chem., Int. Ed. 2006, 45, 2274.
Paper on the chiral nitrogen-containing Lewis base catalyzed asym-
metric cyclization of allenoates:(j) Cowen, B. J.; Saunders, L. B.; Miller,
S. J. J. Am. Chem. Soc. 2009, 131, 6105.
(4) (a) Mugishima, T.; Tsuda, M.; Kasai, Y.; Ishiyama, H.; Fukushi,
E.; Kawabata, J.; Watanabe, M.; Akao, K.; Kobayashi, J. J. Org. Chem.
2005, 70, 9430. (b) Bond, R. F.; Boeyens, J. C. A.; Holzapfel, C. W.;
Steyn, P. S. J. Chem. Soc., Perkin Trans. 1 1979, 175. (c) Greshock, T. J.;
Grubbs, A. W.; Jiao, P.; Wicklow, D. T.; Gloer, J. B.; Williams, R. M.
Angew. Chem., Int. Ed. 2008, 47, 3573. (d) Tsukamoto, S.; Kawabata, T.;
Kato, H.; Greshock, T. J.; Hirota, H.; Ohta, T.; Williams, R. M. Org.
Lett. 2009, 11, 1297. (e) Marti, C.; Carreira, E. M. Eur. J. Org. Chem.
2003, 2209. (f) Toyota, M.; Ihara, M. Nat. Prod. Rep. 1998, 15, 327. (g)
Dounay, A. B.; Hatanaka, K.; Kodanko, J. J.; Oestreich, M.; Overman,
L. E.; Pfeifer, L. A.; Weiss, M. M. J. Am. Chem. Soc. 2003, 125, 6261. (h)
Miyamoto, H.; Okawa, Y.; Nakazaki, A.; Kobayashi, S. Angew. Chem.,
Int. Ed. 2006, 45, 2274 and reference therein.
Having identified the optimal reaction conditions, we
next set out to examine the scope and limitations of the
[3 þ 2] cycloaddition reaction catalyzed by PBu3 using
various isatin derivatives 1 with different substituents on
the benzene rings, and the results are summarized in Table
1. As can be seen from Table 1, whether electron-with-
drawing or electron-donating groups at the 5-, 6- or 7-posi-
tion of the benzene ring of N-Boc protected isatins 1 were
employed, the reactions proceeded smoothly to give the
corresponding products 3 and 4 in good total yields along
(5) For their applications in medicinal chemistry: Fensome, A.;
Adams, W. R.; Adams, A. L.; Berrodin, T. J.; Cohen, J.; Huselton, C.;
Illenberger, A.; Kern, J. C.; Hudak, V. A.; Marella, M. A.; Melenski,
E. G.; McComas, C. C.; Mugford, C. A.; Slayden, O. D.; Yudt, M.;
Zhang, Z.; Zhang, P.; Zhu, Y.; Winneker, R. C.; Wrobel, J. E. J. Med.
Chem. 2008, 51, 1861.
Org. Lett., Vol. 13, No. 5, 2011
1143