14 Z.-Y. Xiao, X. Zhao, X.-K. Jiang and Z.-T. Li, Org. Biomol. Chem.,
2009, 7, 2540–2547.
15 S. J. Lee, J. T. Hupp and S. T. Nguyen, J. Am. Chem. Soc., 2008, 130,
9632–9633.
16 K. Balakrishnan, A. Datar, W. Zhang, X. Yang, T. Naddo, J. Huang,
J. Zuo, M. Yen, J. S. Moore and L. Zang, J. Am. Chem. Soc., 2006,
128, 6576–6577.
17 K. Balakrishnan, A. Datar, R. Oitker, H. Chen, J. Zuo and
L. Zang, J. Am. Chem. Soc., 2005, 127, 10496–10497.
18 Z. Tian, Y. Chen, W. Yang, J. Yao, L. Zhu and Z. Shuai, Angew.
Chem., Int. Ed., 2004, 43, 4060–4063.
EDX diagram supported that these hollow nanospheres con-
sisted of Pt metal (Fig. 8e).
The templating effect of T3 was also investigated. Both Pt
nanotubes and nanospheres were observed when the above
procedures were carried out with this compound. Because the
introduction of aqueous K2PtCl4 partially destroyed the well-
ordered tubular or vesicular structures of T3 in methanol, the
resulting Pt nanotubes and nanospheres were always accompa-
nied by Pt agglomeration (Fig. S11 of ESI†).
19 Y. Wang, H. Fu, A. Peng, Y. Zhao, J. Ma, Y. Ma and J. Yao, Chem.
Commun., 2007, 1623–1625.
20 B.-S. Kim, D.-J. Hong, J. Bae and M. Lee, J. Am. Chem. Soc., 2005,
127, 16333–16337.
Conclusions
21 M. Lee, S.-J. Lee and L.-H. Jiang, J. Am. Chem. Soc., 2004, 126,
12724–12725.
22 S. Burghardt, A. Hirsch, B. Schade, K. Ludwig and C. Bottcher,
Angew. Chem., Int. Ed., 2005, 44, 2976–2979.
23 Y. Li, B. S. Lokitz and C. L. McCormick, Angew. Chem., Int. Ed.,
2006, 45, 5792–5795.
24 L. Gao, L. Shi, W. Zhang, Y. An, Z. Liu, G. Li and Q. Meng,
Macromolecules, 2005, 38, 4548–4550.
25 A. Ajayaghosh, R. Varghese, V. K. Praveen and S. Mahesh, Angew.
Chem., Int. Ed., 2006, 45, 3261–3264.
26 Y. Chen, B. Zhu, F. Zhang, Y. Han and Z. Bo, Angew. Chem., Int.
Ed., 2008, 47, 6015–6018.
27 S. Y. Kim, K. E. Lee, S. S. Han and B. Jeong, J. Phys. Chem. B, 2008,
112, 7420–7423.
28 B. Guan, M. Jiang, X. Yang, Q. Liang and Y. Chen, Soft Matter,
2008, 4, 1393–1395.
In this study, we describe a novel class of aromatic amides that
are capable of self-assembling into vesicles or micro/nano-tubes.
The shape and size of the aggregates can be tuned by changing
the polarity of the solvents and the concentration. The vesicle-to-
tube transformation represents a new promising strategy for the
construction of well-ordered supramolecular systems of different
shape and size from single molecular building block. By taking
advantage of simple surface chemistry, we also demonstrate that
these organic micro/nano-tubes and vesicles can be used as
degradable supporting materials to fabricate Pt tubes and hollow
Pt spheres. This strategy provides an alternative method to
prepare well-defined metal nanostructures in desired morpho-
logies, which may be applicable to the fabrication of other
transition metal nanostructures.
29 C. Ott, R. Hoogenboom, S. Hoeppener, D. Wouters, J.-F. Gohy and
U. S. Schubert, Soft Matter, 2009, 5, 84–91.
30 Y. Ding, A. Mathur, M. Chen and J. Erlebacher, Angew. Chem., Int.
Ed., 2005, 44, 4002–4006.
31 Z. Chen, M. Waje, W. Li and Y. Yan, Angew. Chem., Int. Ed., 2007,
46, 4060–4063.
32 C. Mu, Y. Yu, R. Wang, K. Wu, D. Xu and G. Guo, Adv. Mater.,
2004, 16, 1550–1553.
33 A. Takai, Y. Yamauchi and K. Kuroda, Chem. Commun., 2008,
4171–4173.
Acknowledgements
This research is supported by the National Science Foundation
of China (Nos. 20621062, 20672137, 20732007, 20872167), the
National Basic Research Program (2007CB808000) and the
Science and Technology Commission of Shanghai Municipality
(09XD1405300).
34 B. Mayers, X. Jiang, D. Sunderland, B. Cattle and Y. Xia, J. Am.
Chem. Soc., 2003, 125, 13364–13365.
35 S. Guo, S. Dong and E. Wang, Chem.–Eur. J., 2008, 14, 4689–4695.
36 For examples fabricating Pt nanotubes from organic templates, see(a)
L. Yu, I. A. Banerjee and H. Matsui, J. Mater. Chem., 2004, 14, 739–
743; (b) T. Kijima, T. Yoshimura, M. Uota, T. Ikeda, D. Fujikawa,
S. Mouri and S. Uoyama, Angew. Chem., Int. Ed., 2004, 43, 228–232.
37 Y.-X. Xu, G.-T. Wang, X. Zhao, X.-K. Jiang and Z.-T. Li, Langmuir,
2009, 25, 2684–2688.
References
1 G. M. Whitesides, J. P. Mathias and C. T. Seto, Science, 1991, 254,
1312–1319.
2 V. Palermo and P. Samori, Angew. Chem., Int. Ed., 2007, 46,
4428–4432.
38 F. M. Menger and K. D. Gabrielson, Angew. Chem., Int. Ed. Engl.,
1995, 34, 2091–2106.
3 S. H. Seo, J. Y. Chang and G. N. Tew, Angew. Chem., Int. Ed., 2006,
45, 7526–7530.
39 S. Takeoka, K. Mori, H. Ohkawa, K. Sou and E. Tsuchida, J. Am.
Chem. Soc., 2000, 122, 7927–7935.
4 Y. J. Jeon, P. K. Bharadwaj, S. Choi, J. W. Lee and K. Kim, Angew.
Chem., Int. Ed., 2002, 41, 4474–4476.
40 H. H. Zepik, P. Walde and T. Ishikawa, Angew. Chem., Int. Ed., 2008,
47, 1323–1325.
41 D. E. Discher and A. Eisenberg, Science, 2002, 297, 967–973, and
references therein.
5 P. Falvey, C. W. Lim, R. Darcy, T. Revermann, U. Karst,
M. Giesbers, A. T. M. Marcelis, A. Lazar, A. W. Coleman,
D. N. Reinhoudt and B. J. Ravoo, Chem.–Eur. J., 2005, 11,
1171–1180.
42 J. Du, Y. Tang, A. L. Lewis and S. P. Armes, J. Am. Chem. Soc., 2005,
127, 17982–17983.
6 B. J. Ravoo and R. Darcy, Angew. Chem., Int. Ed., 2000, 39,
4324–4326.
43 W. Cai, G.-T. Wang, Y.-X. Xu, X.-K. Jiang and Z.-T. Li, J. Am.
Chem. Soc., 2008, 130, 6936–6937.
44 A. Ajayaghosh, R. Varghese, S. Mahash and V. K. Praveen, Angew.
Chem., Int. Ed., 2006, 45, 7729–7732.
7 F. J. M. Hoeben, I. O. Shklyarevskiy, M. J. Pouderoijen,
H. Engelkamp, A. P. H. J. Schenning, P. C. M. Christianen,
J. C. Maan and E. W. Meijer, Angew. Chem., Int. Ed., 2006, 45,
1232–1236.
45 A. Ajayaghosh, P. Chithra and R. Varghese, Angew. Chem., Int. Ed.,
2007, 46, 230–233.
8 X. Zhang, X. Zhang, W. Shi, X. Meng, C. Lee and S. Lee, Angew.
Chem., Int. Ed., 2007, 46, 1525–1528.
46 X. Yan, Y. Cui, Q. He, K. Wang, J. Li, W. Mu, B. Wang and
Z. Ou-yang, Chem.–Eur. J., 2008, 14, 5974–5980.
47 X. Yan, Q. He, K. Wang, L. Duan, Y. Cui and J. Li, Angew. Chem.,
Int. Ed., 2007, 46, 2431–2434.
48 Y. Song, S. R. Challa, C. J. Medforth, Y. Qiu, R. K. Watt, D. Pena,
J. E. Miller, F. van Swol and J. A. Shelnutt, Chem. Commun., 2004,
1044–1045.
9 Y. S. Zhao, W. Yang, D. Xiao, X. Sheng, X. Yang, Z. Shuai, Y. Luo
and J. Yao, Chem. Mater., 2005, 17, 6430–6435.
10 S. Hecht and A. Khan, Angew. Chem., Int. Ed., 2003, 42, 6021–6024.
11 Z. Wang, C. J. Medforth and J. A. Shelnutt, J. Am. Chem. Soc., 2004,
126, 15954–15955.
12 G. D. Pantos, J.-L. Wietor and J. K. M. Sanders, Angew. Chem., Int.
Ed., 2007, 46, 2238–2240.
49 M. Yang, W. Wang, F. Yuan, X. Zhang, J. Li, F. Liang, B. He,
B. Minch and G. Wegner, J. Am. Chem. Soc., 2005, 127, 15107–15111.
13 Y. Che, A. Datar, K. Balakrishnan and L. Zang, J. Am. Chem. Soc.,
2007, 129, 7234–7235.
This journal is ª The Royal Society of Chemistry 2010
Soft Matter, 2010, 6, 1246–1252 | 1251