˚
O. Aberg and B. Langstrom
˚
¨
injection to the micro-autoclave, which suggests that coordina-
tion or oxidative addition of the azide to the rhodium(I)
complex under these reaction conditions may prevent the
oxidative addition of the iodide. The formation of a nitrene
complex on loss of molecular nitrogen is also a plausible
reaction mechanism.16
References
[1] H. C. Englert, U. Gerlach, H. Goegelein, J. Hartung, H. Heitsch,
D. Mania, S. Scheidler, J. Med. Chem. 2001, 44, 1085.
[2] P. Deprez, J. Guillaume, R. Becker, A. Corbier, S. Didierlaurent,
M. Fortin, D. Frechet, G. Hamon, B. Heckmann, H. Heitsch,
H. W. Kleemann, J. P. Vevert, J. C. Vincent, A. Wagner, J. D. Zhang,
J. Med. Chem. 1995, 38, 2357.
[3] J. W. Chern, Y. L. Leu, S. S. Wang, R. W. Jou, C. F. Lee, P. C. Tsou,
S. C. Hsu, Y. C. Liaw, H. M. Lin, J. Med. Chem. 1997, 40, 2276.
[4] B. W. McCleland, R. S. Davis, M. R. Palovich, K. L. Widdowson,
M. L. Werner, M. Burman, J. J. Foley, D. B. Schmidt, H. M. Sarau,
M. Rogers, K. L. Salyers, P. D. Gorycki, T. J. Roethke, G. J. Stelman,
L. M. Azzarano, K. W. Ward, J. Busch-Petersen, Bioorg. Med. Chem.
Lett. 2007, 17, 1713.
Meta-cyanoaniline is a weak nucleophile and yielded a very
lipophilic byproduct as the major labelled product, whereas the
desired urea 5 was produced in only 24% radiochemical yield
(Table 1, Entry 5). The deactivated p-acetylaniline gave low
[11C]O-conversion and resulted in low a yield of urea 6, probably
due to its low nucleophilicity (Table 1, Entry 6). The reaction with
the strong nucleophile n-butylamine and phenylazide 1a gave
the urea 9 as the only labelled product. The related reaction
using p-toluenesulphonylazide 1c as the substrate gave a
slightly lower yield of [11C]tolbutamide 10 (Table 1, Entries 9
and 10). The loss of product on purification (compared with the
analytical radiochemical yield) were in the range of 10–30% as
exemplified by compounds 2 and 11 that were isolated using
semi-preparative HPLC in 61 and 68% decay-corrected radio-
chemical yield, respectively.
˚
[5] M. Bergstrom, A. Grahnen, B. Langstrom, Eur. J. Clin. Pharmacol.
¨
2003, 59, 357.
¨
[6] K. I. Nishijima, Y. Kuge, K. Seki, K. Ohkura, N. Motoki, K. Nagatsu,
A. Tanaka, E. Tsukamoto, N. Tamaki, Nucl. Med. Biol. 2002, 29, 345.
[7] P. Landais, C. Crouzel, Appl. Radiat. Isot. 1987, 38, 297.
[8] C. Crouzel, D. Roeda, M. Berridge, R. Knipper, D. Comar, Int. J.
Appl. Radiat. Isot. 1983, 34, 1558.
[9] D. Roeda, G. Westera, Int. J. Appl. Radiat. Isot. 1981, 32, 931.
˚
¨
[10] T. Kihlberg, F. Karimi, B. Langstrom, J. Org. Chem. 2002, 67, 3687.
[11] A. Schirbel, M. H. Holschbach, H. H. Coenen, J. Label. Compd.
Radiopharm. 1999, 42, 537.
[12] E. W. Van Tilburg, A. D. Windhorst, M. Van der Mey,
J. D. M. Herscheid, J. Label. Compd. Radiopharm. 2006, 49, 321.
[13] G. La Monica, S. Cenini, J. Orgmet. Chem. 1981, 216, C35.
[14] G. La Monica, S. Cenini, J. Mol. Catal. 1984, 23, 89.
[15] G. La Monica, G. Ardizzoia, G. Maddinelli, S. Tollari, J. Mol. Catal.
1986, 38, 327.
Another perspective to consider in selecting which molecular
fragment to be the nucleophile or azide except for the reactivity
is the potential problems in the final work up, such as using
HPLC to separate a high concentration of the nucleophile from a
low concentration of the labelled product.
[16] S. Cenini, Coord. Chem. Rev. 2006, 250, 1234.
[17] J. P. Collman, M. Kubota, J. W. Hosking, J. Am. Chem. Soc. 1967,
89, 4809.
Conclusions
[18] H. Doi, J. Barletta, M. Suzuki, R. Noyori, Y. Watanabe,
˚
Rh(I)-mediated carbonylations of azides to form [11C]ureas
tolerate both acidic and basic substituents. Generally, strong
nucleophiles gave higher yields and cleaner reactions. An
aromatic iodide in the substrate competes for coordination/
oxidative addition to the metal and results in high byproduct
formation and low radiochemical yields. An aromatic iodide in
the nucleophile interfered less and gave higher yield and a
cleaner reaction. Sulphonazides worked well as substrates and
the cytotoxic agent [11C]LY-181984 11 was obtained in useful
radiochemical yields. Overall, the robust method utilizing Rh(I)-
mediated carbonylative cross-coupling of an azide and an amine
to form [11C]ureas is an attractive alternative to established
methods, such as the use of [11C]phosgene.
¨
B. Langstrom, Org. Biomol. Chem. 2004, 2, 3063.
˚
[19] O. Ilovich, O. Aberg, B. Langstrom, E. Mishani, J. Label. Compd.
˚
Radiopharm. 2009, 52, 151.
¨
[20] A. K. Ghosh, A. Bischoff, J. Cappiello, Eur. J. Org. Chem. 2003, 821.
[21] M. M. Campbell, A. D. Dunn, Org. Mass Spectrom. 1972, 6, 599.
[22] C. Arnal-Herault, M. Barboiu, E. Petit, M. Michau, A. van der Lee,
New J. Chem. 2005, 29, 1535.
[23] T. Adler, J. Bonjoch, J. Clayden, M. Font-Bardia, M. Pickworth,
X. Solans, D. Sole, L. Vallverdu, Org. Biomol. Chem. 2005, 3, 3173.
[24] J. N. Dominguez, C. Leon, J. Rodrigues, N. G. de Dominguez,
J. Gut, P. J. Rosenthal, J. Med. Chem. 2005, 48, 3654.
[25] Y. Matsumura, Y. Satoh, O. Onomura, T. Maki, J. Org. Chem. 2000,
65, 1549.
[26] D. S. Johnson, K. Ahn, S. Kesten, S. E. Lazerwith, Y. Song, M. Morris,
L. Fay, T. Gregory, C. Stiff, J. B. Dunbar, M. Liimatta, D. Beidler,
S. Smith, T. K. Nomanbhoy, B. F. Cravatt, Bioorg. Med. Chem. Lett.
2009, 19, 2865.
˚
˚
[27] J. Eriksson, O. Aberg, B. Langstrom, Eur. J. Org. Chem. 2007, 455.
[28] T. Kihlberg, B. Langstrom, C01B 31/18 (2006.01), C07B 59/00
¨
Acknowledgement
˚
¨
(2006.01) ed. (Ed.: A. PLC), Sweden, 2002.
[29] Q. L. Horn, D. S. Jones, R. N. Evans, C. A. Ogle, T. C. Masterman,
Acta Crystallogr. E 2002, 58, m51.
˚
[30] O. Aberg, Doctoral thesis, comprehensive summary thesis,
Uppsala University (Uppsala), 2009.
[31] F. Brotzel, Y. C. Chu, H. Mayr, J. Org. Chem. 2007, 72, 3679.
This work was conducted in collaboration with Uppsala Imanet,
GE Healthcare. Assoc. Prof. Tor Kihlberg and Dr. Tamara Church
are gratefully acknowledged for linguistic advice and comment-
ing on the text.
Copyright r 2010 John Wiley & Sons, Ltd.
J. Label Compd. Radiopharm 2011, 54 38–42