Lukas J. Gooßen et al.
COMMUNICATIONS
Table 3. (Continued)
Product
Yield [%]
85
Product
Yield [%]
76[d]
76
74
59
41
[a]
Conditions: 1.20 mmol 1a, 1.00 mmol 2, 0.07 mmol Fe3O4, 2808C, 21 h, 2 mL Dowtherm A, isolated yields.
72 h.
Mixture of isomers.
2708C.
[b]
[c]
[d]
toluic acid (1a) (8.17 g, 60.0 mmol), phenylacetic acid (2a)
(6.88 g, 99% purity, 50.0 mmol), and degassed Dowtherm A
(100 mL). The apparatus was evacuated and flushed with ni-
trogen three times. The reaction mixture was heated to
reflux (2508C) overnight in a metal bath, while continuously
removing CO2 and water in a slow stream of nitrogen. The
mixture was then distilled trap-to-trap (60–1108C,
10À3 mbar) to give a clear, yellow distillate and dark brown
residue. Compound 3aa was separated from Dowtherm A
by fractional distillation over a Vigreux column (Dowtherm:
55–608C, 10À3 mbar) and obtained as a pale yellow oil that
solidified to an off-white solid upon cooling (100–1058C,
10À3 mbar); yield: 8.43 g (80%), as a 10:1 mixture with 1,3-
diphenylacetone (9aa). For spectroscopic characterisation,
the product was further purified by column chromatography
(SiO2, ethyl acetate/hexane gradient). The spectroscopic
data matched those reported in the literature for 2-phenyl-
1-(3-tolyl)-ethanone (3aa) (CAS 95606-81-8).
Ichikawa, M. Kitaoka, M. Taki, S. Takaishi, Y. Iijima,
M. Boriboon, T. Akiyama, Planta Med. 1997, 63, 540–
543.
[3] a) N. O. Calloway, Chem. Rev. 1935, 17, 327–392;
b) C. W. Schellhammer, in: Methoden der Organischen
Chemie (Houben-Weyl), Vol. VII/2a (Ed.: E. Mꢂller),
Georg Thieme Verlag, Stuttgart, 1973, pp 15–379.
[4] a) E. Negishi, F. Liu, in: Methal-catalyzed Cross-cou-
pling Reactions, (Eds.: F. Diederich, P. J. Stang), Wiley-
VCH, Weinheim, 1998, pp 18–19; b) P. Knochel,
M. C. P. Yeh, S. C. Berk, J. Talbert, J. Org. Chem. 1988,
53, 2390–2392.
[5] a) S. Nahm, S. W. Weinreb, Tetrahedron Lett. 1981, 22,
3815–3818; b) F. Sato, M. Inoue, K. Oguro, M. Sato,
Tetrahedron Lett. 1979, 4303–4306; c) D. Wang, Z.
Zhang, Org. Lett. 2003, 5, 4645–4648; d) J. I. Lee, Bull.
Korean Chem. Soc. 2007, 28, 863–866.
[6] a) L. J. Gooßen, K. Ghosh, Angew. Chem. 2001, 113,
3566–3568; Angew. Chem. Int. Ed. 2001, 40, 3458–
3460; b) L. J. Gooßen, K. Ghosh, Chem. Commun.
2001, 20, 2084–2085; c) L. J. Gooßen, L. Winkel, A.
Dçhring, K. Ghosh, J. Paetzold, Synlett 2002, 8, 1237–
1240.
[7] T. Jeffrey, Tetrahedron Lett. 1991, 32, 2121–2124.
[8] L. J. Gooßen, F. Rudolphi, C. Oppel, N. Rodrꢃguez,
Angew. Chem. 2008, 120, 3085–3088; Angew. Chem.
Int. Ed. 2008, 47, 3043–3045.
Acknowledgements
We gratefully acknowledge Dr. C. Lehmann, H.-J. Bongard
and A. Dreier (MPI for Coal Research, Muelheim) for char-
acterising the nanoparticles by SEM and TEM. We thank
NanoKat, Novartis (Young Investigator Award for L.J.G.)
and the Landesgraduiertenfçrderung Rheinland-Pfalz (fel-
lowship for P.M.) for financial support.
[9] a) M. Renz, Eur. J. Org. Chem. 2005, 6, 979–988; b) M.
Renz, A. Corma, Eur. J. Org. Chem. 2004, 9, 2036–
2039.
[10] S. Sugiyama, K. Sato, S. Yamasaki, K. Kawashiro, H.
Hayashi, Catal. Lett. 1992, 14, 127–133.
References
[11] R. Pestman, R. M. Koster, A. van Duijne, J. A. Z. Pie-
[1] F. A. Tomꢁs-Barberꢁn, M. N. Clifford, J. Sci. Food
Agric. 2000, 80, 1073–1080.
terse, V. Ponec, J. Catal. 1997, 168, 265–272.
[12] W. A. Beavers, U.S. Patent 20070100166, 2007.
[13] a) D. M. Cowan, G. H. Jeffery, A. I. Vogel, J. Chem.
Soc. 1940, 171–176; b) G. P. Hussmann, U.S. Patent
[2] a) K. Sukumaran, R. Kuttan, J. Ethnopharmacol. 1991,
34, 93–96; b) J. Orjala, A. D. Wright, H. Behrends, G.
Folkers, O. Sticher, J. Nat. Prod. 1994, 57, 18–26; c) K.
62
ꢀ 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2011, 353, 57 – 63