Scheme 1. Synthesis and Acid-Induced Reactions of Porphyrin-2,3-dione Mono- and Dioximes
porphyrin has been shown to be quite versatile, whereby
the largest spectral shifts are achieved by annulation of
(multiple) polycyclic aromatic moieties (including other
porphyrins).5,6 Recent examples, such as the azulene- and
anthracene-fused porphyrins 2 and 3, introduced by
Osuka, Kim, and Anderson, respectively, are representa-
tive examples for such annulated porphyrins.6
Porphyrin-2,3-dione 4, introduced by the group of
Crossley,7 was shown to be a versatile molecule for the
generation of a structurally diverse family of β,β-annu-
lated systems by reaction of 4 with diamines.8 We report
here the formation and reactivity of the mono- and
dioximes of 4 (Scheme 1) and their conversion to mono-
and bis-quinoline-annulated chromophores that are also
characterized by bathochromically shifted optical spectra
when compared to the parent meso-tetraphenylporphyrin
or dione 4. We also report the formation and X-ray cry-
stal structure of a bis-quinoline-fused porphyrin quinoline-
N-oxide 12.
(5) For recent select examples of aromatic systems fused to porphy-
rins, see: (a) Lash, T. D.; Werner, T. M.; Thompson, M. L.; Manley,
J. M. J. Org. Chem. 2001, 66, 3152–3159. (b) Gill, H. S.; Harmjanz, M.;
ꢀ
SantamarIa, J.; Finger, I.; Scott, M. J. Angew. Chem., Int. Ed. 2004, 43,
485–490. (c) Nakamura, N.; Aratani, N.; Shinokubo, H.; Takagi, A.;
Kawai, T.; Matsumoto, T.; Yoon, Z. S.; Kim, D. Y.; Ahn, T. K.; Kim,
D.; Muranaka, A.; Kobayashi, N.; Osuka, A. J. Am. Chem. Soc. 2006,
128, 4119–4127. (d) Hayashi, S.; Tanaka, M.; Hayashi, H.; Eu, S.;
Umeyama, T.; Matano, Y.; Araki, Y.; Imahori, H. J. Phys. Chem. C
2008, 112, 15576–15585. (e) Sooambar, C.; Troiani, V.; Bruno, C.;
Marcaccio, M.; Paolucci, F.; Listorti, A.; Belbakra, A.; Armaroli, N.;
Magistrato, A.; De Zorzi, R.; Geremia, S.; Bonifazi, D. Org. Biomol.
Chem. 2009, 7, 2402–2413. (f) Jiao, C. J.; Huang, K. W.; Guan, Z. P.; Xu,
Q. H.; Wu, J. S. Org. Lett. 2010, 12, 4046–4049. (g) Diev, V. V.; Hanson,
K.; Zimmerman, J. D.; Forrest, S. R.; Thompson, M. E. Angew. Chem.,
Int. Ed. 2010, 49, 5523–5526 and references therein.
(6) (a) Kurotobi, K.; Kim, K. S.; Noh, S. B.; Kim, D.; Osuka, A.
Angew. Chem., Int. Ed. 2006, 45, 3944–3947. (b) Davis, N. K. S.;
Pawlicki, M.; Anderson, H. L. Org. Lett. 2008, 10, 3945–3947. (c) Davis,
N. K. S.; Thompson, A. L.; Anderson, H. L. J. Am. Chem. Soc. 2011,
133, 30–31. (d) Davis, N. K. S.; Thompson, A. L.; Anderson, H. L. Org.
Lett. 2010, 12, 2124–2127.
Reaction of dione 4 with an ∼100-fold excess of
NH2OH HCl in pyridine at ambient temperature over
3
24 h forms one major product and a minor product (91%
and 5% isolated yields, respectively) that are identified as
the corresponding monooxime 5 (HR-MS ESIþ, 100%
CH3CN, suggests a composition of C44H30N5O2 for
MHþ) and bisoxime 6, respectively. A diagnostic signal
1
in the H NMR spectrum (CDCl3, 400 MHz) for 5 is a
(7) First report: (a) Crossley, M. J.; Burn, P. L. J. Chem. Soc., Chem.
Commun. 1987, 39–40. Alternative syntheses: (b) Crossley, M. J.;
Harding, M. M.; Sternhell, S. J. Org. Chem. 1988, 53, 1132–1137. (c)
Daniell, H. W.; Williams, S. C.; Jenkins, H. A.; Bruckner, C. Tetra-
hedron Lett. 2003, 44, 4045–4049. (d) Starnes, S. D.; Rudkevich, D. M.;
Rebek, J., Jr. J. Am. Chem. Soc. 2001, 123, 4659–4669.
(8) For recent examples, see: (a) Khoury, T.; Crossley, M. J. Chem.
Commun. 2007, 4851–4853. (b) Khoury, T.; Crossley, M. J. New J.
Chem. 2009, 33, 1076–1086. (c) Crossley, M. J.; Sintic, P. J.; Walton, R.;
Reimers, J. R. Org. Biomol. Chem. 2003, 1, 2777–2782.
€
Org. Lett., Vol. 13, No. 6, 2011
1323