Journal of the American Chemical Society
COMMUNICATION
cyclopropane derivatives by nucleophilic or electrophilic addition to
the activated π-bonds as a result of the high ring strain.1,2 In
particular, nucleophilic addition with soft nucleophiles would
provide an entry to chiral heterosubstituted cyclopropanes, which
would be difficult or impossible to access via direct asymmetric
cyclopropanation of alkenes. As an initial effort toward this type of
applications, we demonstrated that cyclopropene 3af could under-
go highly diastereoselective addition reactions with thiol nucleo-
philes to furnish heterosubstituted cyclopropane derivatives
(Table 4).16 For example, when 3af in 98% ee was treated with
1.5 equiv of n-propanethiol, the corresponding 1,1,2,3-tetra-sub-
stituted cyclopropane 4a could be isolated in 98% yield as a sole
diastereomer in the same high optical purity (entry 1). The absolute
configuration of the three continuous stereogenic centers in 4a was
established to be [1S,2R,3S] by X-ray crystal structural analysis (see
Supporting Information). Highly diastereoselective addition reac-
tions of 3af could be similarly accomplished with isopropanethiol
and tert-butylthiol, affording enantiopure thiolated cyclopropanes
4b and 4c, respectively, albeit in relatively lower yields due to the
higher steric hindrance (entries 2 and 3).
Nakamura, M.; Isobe, H.; Nakamura, E. Chem. Rev. 2003, 103, 1295. (e)
Carter, F. L.; Frampton, V. L. Chem. Rev. 1964, 64, 497. (f) Prosser, A. R.;
Banning, J. E.; Rubina, M.; Rubin, M. Org. Lett. 2010, 12, 3968. (g) Banning,
J. E.; Prosser, A. R.; Rubin, M. Org. Lett. 2010, 12, 1488. (h) Alnasleh, B. K.;
Sherrill, W. M.; Rubina, M.; Banning, J.; Rubin, M. J. Am. Chem. Soc. 2009,
131, 6906. (i) Sherrill, W. M.; Rubin, M. J. Am. Chem. Soc. 2008, 130, 13804.
(j) Alnasleh, B. K.; Sherrill, W. M.; Rubin, M. Org. Lett. 2008, 10, 3231. (k)
Xie, X. C.; Yang, Z.; Fox, J. M. J. Org. Chem. 2010, 75, 3847. (l) Tarwade, V.;
Liu, X. Z.; Yan, N.; Fox, J. M. J. Am. Chem. Soc. 2009, 131, 5382. (m) Yan, N.;
Liu, X. Z.; Fox, J. M. J. Org. Chem. 2008, 73, 563. (n) Fisher, L. A.; Fox, J. M. J.
Org. Chem. 2008, 73, 8474.
(2) Marek, I.; Simaan, S.; Masarwa, A. Angew. Chem., Int. Ed. 2007,
46, 7364.
(3) (a) Protopopova, M. N.; Doyle, M. P.; M€uller, P.; Ene, D. J. Am.
Chem. Soc. 1992, 114, 2755. (b) Doyle, M. P.; Protopopova, M.; M€uller,
P.; Ene, D.; Shapiro, E. A. J. Am. Chem. Soc. 1994, 116, 8492. (c) Imogai,
H.; Bernardinelli, G.; Granicher, C.; Moran, M.; Rossier, J. C.; M€uller, P.
Helv. Chim. Acta 1998, 81, 1754. (d) M€uller, P.; Imogai, H. Tetrahedron:
Asymmetry 1998, 9, 4419. (e) Lou, Y.; Horikawa, M.; Kloster, R. A.;
Hawryluk, N. A.; Corey, E. J. J. Am. Chem. Soc. 2004, 126, 8916. (f) Lou,
Y.; Remarchuk, T. P.; Corey, E. J. J. Am. Chem. Soc. 2005, 127, 14223.
(4) For asymmetric intramolecular cyclopropenation with diazoacetates,
see:(a) Doyle, M. P.; Ene, D. G.; Forbes, D. C.; Pillow, T. H. Chem. Commun.
1999, 1691. (b) Doyle, M. P.; Ene, D. G.; Peterson, C. S.; Lynch, V. Angew.
Chem., Int. Ed. 1999, 38, 700. (c) Doyle, M. P.; Hu, W. H. Tetrahedron Lett.
2000, 41, 6265. (d) Doyle, M. P.; Hu, W. H. Synlett 2001, 1364. (e) Doyle,
M. P.; Weathers, T. M.; Wang, Y. H. Adv. Synth. Catal. 2006, 348, 2403.
(5) Weatherhead-Kloster, R. A.; Corey, E. J. Org. Lett. 2006, 8, 171.
(6) (a) Davies, H. M. L.; Lee, G. H. Org. Lett. 2004, 6, 1233. (b)
Chuprakov, S.; Gevorgyan, V. Org. Lett. 2007, 9, 4463.
Furthermore, we showed that the thiolated cyclopropane 4a
could be oxidatively converted to cyclopropyl sulfone 5a in a high
yield without loss of its optical purity upon simple treatment with
m-chloroperbenzoic acid (CPBA) at room temperature (eq 1).
(7) Briones, J. F.; Hansen, J.; Hardcastle, K. I.; Autschbach, J.;
Davies, H. M. L. J. Am. Chem. Soc. 2010, 132, 17211.
(8) Panne, P.; Fox, J. M. J. Am. Chem. Soc. 2007, 129, 22 Although
the issue of enantioselectivity was not addressed, it was shown that Rh2
complexes of sterically demanding carboxylate ligands could effectively
catalyze cyclopropenation with R-alkyldiazoacetates possessing β-hydrogens,
a class of donor/acceptor-substituted diazo reagents that are challenging for
metal-mediated carbene transfer reactions due to competitive β-elimination..
(9) For a recent nonasymmetric synthesis of trifluoromethyl-sub-
stituted cyclopropenes via Rh2-catalyzed cyclopropenation of alkynes,
see: Morandi, B.; Carreira, E. M. Angew. Chem., Int. Ed. 2010, 49, 4294.
(10) While this manuscript was in the process of submission, Katsuki
and coworkers reported a Ir(salen)-catalyzed asymmetric cyclopropenation
system that is effective with a cyclic R-cyanodiazoacetamide in addition
to several donor/acceptor-substituted diazo reagents, see: Uehara, M.;
Suematsu, H.; Yasutomi, Y.; Katsuki, T. J. Am. Chem. Soc. 2011, 133, 170.
(11) (a) Doyle, M. P. Angew. Chem., Int. Ed. 2009, 48, 850. (b)
Huang, L. Y.; Chen, Y.; Gao, G. Y.; Zhang, X. P. J. Org. Chem. 2003, 68,
8179. (c) Penoni, A.; Wanke, R.; Tollari, S.; Gallo, E.; Musella, D.;
Ragaini, F.; Demartin, F.; Cenini, S. Eur. J. Inorg. Chem. 2003, 1452.
(12) Chen, Y.; Fields, K. B.; Zhang, X. P. J. Am. Chem. Soc. 2004, 126,
14718.
(13) (a) Chen, Y.; Zhang, X. P. J. Org. Chem. 2007, 72, 5931. (b)
Chen, Y.; Ruppel, J. V.; Zhang, X. P. J. Am. Chem. Soc. 2007, 129, 12074.
(c) Zhu, S. F.; Ruppel, J. V.; Lu, H. J.; Wojtas, L.; Zhang, X. P. J. Am.
Chem. Soc. 2008, 130, 5042. (d) Zhu, S. F.; Perman, J. A.; Zhang, X. P.
Angew. Chem., Int. Ed. 2008, 47, 8460. (e) Fantauzzi, S.; Gallo, E.; Rose,
E.; Raoul, N.; Caselli, A.; Issa, S.; Ragaini, F.; Cenini, S. Organometallics
2008, 27, 6143. (f) Ruppel, J. V.; Gauthier, T. J.; Snyder, N. L.; Perman,
J. A.; Zhang, X. P. Org. Lett. 2009, 11, 2273. (g) Zhu, S. F.; Xu, X.;
Perman, J. A.; Zhang, X. P. J. Am. Chem. Soc. 2010, 132, 12796.
(14) Dzik, W. I.; Xu, X.; Zhang, X. P.; Reek, J. N. H.; de Bruin, B.
J. Am. Chem. Soc. 2010, 132, 10891.
In summary, we have developed a highly enantioselective process
based on the new metalloradical catalyst [Co(P2)] for cyclopro-
penation of aryl/vinyl alkynes with both R-cyanodiazoacetamides
and R-cyanodiazoacetates. It represents the first successful applica-
tions of these two types of acceptor/acceptor-substituted diazo
reagents for asymmetric cyclopropenation,10 providing a practical
method for the preparation of multifunctionalized cyclopropenes
bearing enantioenriched all-carbon quaternary stereogenic centers
that may serve as useful chiral synthons for stereoselective synthesis
(Scheme 1). Among several salient features, the Co(II)-based
system enjoys an unusual degree of functional group tolerance,
which is believed to have close relevance to the radical pathway of
Co(II)-based metalloradical catalysis.14
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental details and ana-
b
lytical data for all new compounds. This material is available free
’ AUTHOR INFORMATION
Corresponding Author
’ ACKNOWLEDGMENT
We are grateful for financial support by the National Science
Foundation (CAREER award: CHE-0711024).
(15) (a) Balasubramaniam, S.; Aidhen, I. S. Synthesis-Stuttgart 2008,
3707. (b) Khlestkin, V. K.; Mazhukin, D. G. Curr. Org. Chem. 2003, 7, 967.
(16) (a) Martinez-Grau, A.; Blasco, J. M.; Ferritto, R.; Espinosa, J. F.;
Mantecon, S.; Vaquero, J. J. Arkivoc 2005, 394. (b) Shapiro, E. A.;
Kalinin, A. V.; Nefedov, O. M. Org. Prep. Proced. Int. 1992, 24, 517.
’ REFERENCES
(1) (a) Rubin, M.; Rubina, M.; Gevorgyan, V. Chem. Rev. 2007, 107,
3117. (b) Rubin, M.; Rubina, M.; Gevorgyan, V. Synthesis-Stuttgart 2006,
1221. (c) Fox, J. M.; Yan, N. Curr. Org. Chem. 2005, 9, 719. (d)
3307
dx.doi.org/10.1021/ja111334j |J. Am. Chem. Soc. 2011, 133, 3304–3307