RSC Advances
Paper
point at which the regression line crossed the axis was consid-
ered the detection limit (3.3 ꢀ 10ꢁ7 M).
3 L. Wu, E. Hamid, W. Shin and H. Chiang, Annu. Rev. Physiol.,
2014, 76, 301–331.
4 G. Meer, D. R. Voelker and G. W. Feigenson, Nat. Rev. Mol.
Cell Biol., 2008, 9, 112–124.
Finally, encouraged by these results, we determined whether
Mem-5 worked as a specic probe for imaging near-membrane
copper(II). As shown in Fig. 6e, HepG2 cells were incubated with
Mem-3/5 in the presence of copper(II). Cells treated with Mem-5
without UV irradiation showed no uorescence, indicating
temporal control of the “caging” strategy (Fig. 6e(2)). However,
signicant uorescent enhancement of Mem-3-treated cells was
observed using the same procedure (Fig. 6e(8)). Upon UV irra-
diation, a gradual increase in green uorescence was observed
both in Mem-5 (Fig. 6e(3)) and Mem-3-treated cells (Fig. 6e(9)).
The same cells were simultaneously treated with commercially
available Mem-tracker to independently verify the localisation
´
5 Z. Darwich, A. S. Klymchenko, D. Dujardin and Y. Mely, RSC
Adv., 2014, 4, 8481–8488.
6 D. Lingwood and K. Simons, Science, 2010, 327, 46–50.
7 E. Sezgin, I. Levental, S. Mayor and C. Eggeling, Nat. Rev. Mol.
Cell Biol., 2017, 18, 361–374.
8 J. L. Pincus, C. Y. Jin, W. J. Huang, H. K. Jacobs,
A. S. Gopalan, Y. J. Song, J. A. Shelnutta and D. Y. Sasaki, J.
Mater. Chem., 2005, 15, 2938–2945.
9 L. Li, X. Q. Shen, Q.-H. Xu and S. Q. Yao, Angew. Chem., Int.
Ed., 2013, 52, 424–428.
results. Both Mem-5 and Mem-3-treated cells showed similar 10 Y. Xia and L. Peng, Chem. Rev., 2013, 113, 7880–7929.
membrane-specic images by comparing the colocalisation 11 Z. Liu, T. P. Yang, X. Li, T. Peng, H. C. Hang and X. D. Li,
analysis in Fig. 6e(6) and (12), indicating the strategy was
Angew. Chem., Int. Ed., 2015, 54, 1149–1152.
amenable to the original design principle. Therefore, our pho- 12 T. Peng and H. C. Hang, J. Am. Chem. Soc., 2015, 137, 556–
tocontrollable method was successfully used to qualitatively
detect near-membrane copper(II).
559.
13 M. D. Molin, Q. Verolet, A. Colom, R. Letrun, E. Derivery,
M. Gonzalez-Gaitan, E. Vauthey, A. Roux, N. Sakai and
S. Matile, J. Am. Chem. Soc., 2015, 137, 568–571.
14 I. A. Karpenko, M. Collot, L. Richert, C. Valencia, P. Villa,
Conclusions
´
In this work, we have described the designed photocontrollable
Y. Mely, M. Hibert, D. Bonnet and A. S. Klymchenko, J. Am.
uorogenic probe, Mem-5, which can visualise near-membrane
Chem. Soc., 2015, 137, 405–412.
copper(II) via uorescence imaging, and is equipped with 15 R. J. Radford, W. Chyan and S. J. Lippard, Chem. Sci., 2013, 4,
a photolabile group, high brightness reporter, and membrane- 3080–3084.
anchoring unit (cholesterol or long aliphatic chain). This 16 D. Strausak, J. F. B. Mercer, H. H. Dieter, W. Stremmel and
probe shows an intense uorescence enhancement in response G. Multhaup, Brain Res. Bull., 2001, 55, 175–185.
to copper(II) without interference from 45 other analytes, 17 A. Robert, Y. Liu, M. Nguyen and B. Meunier, Acc. Chem. Res.,
including metal cations, amino acids and anions, under bio- 2015, 48, 1332–1339.
logical conditions. Live-cell imaging results indicate that the 18 O. Bandmann, K. H. Weiss and S. G. Kaler, Lancet Neurol.,
probe can detect near-membrane copper(II) aer membrane 2015, 14, 103–113.
anchoring using a photo-labile spatial and temporal control 19 B. E. Kim, T. Nevitt and D. J. Thiele, Nat. Chem. Biol., 2008, 4,
releasing method. The probe could be very useful for moni- 176–185.
toring the homeostasis of near-membrane copper(II). A clear 20 B. J. McCranor, H. Szmacinski, H. H. Zeng, A. K. Stoddard,
advantage of our photocontrollable method is that it success-
T. Hurst, C. A. Fierke, J. R. Lakowicz and R. B. Thompson,
fully avoids the inuence of chemical species outside cells
Metallomics, 2014, 6, 1034–1042.
during near-membrane specic detection. An important unre- 21 M. R. Krause and S. L. Regen, Acc. Chem. Res., 2014, 47, 3512–
solved issue from this study is the lack of sensitivity for
recording copper(II) across the membrane.
3521.
22 E. Ikonen, Nat. Rev. Mol. Cell Biol., 2008, 9, 125–138.
23 C. S. Lim, M. Y. Kang, J. H. Han, I. A. Danish and B. R. Cho,
Chem.–Asian J., 2011, 6, 2028–2033.
24 L. Li, J. Y. Ge, H. Wu, Q.-H. Xu and S. Q. Yao, J. Am. Chem.
Soc., 2012, 134, 12153–12160.
Acknowledgements
This work was nancially supported by the National Natural
Science Foundation of China (81672508, 61505076), Natural 25 L. Yuan, W. Y. Lin, Z. M. Cao, L. L. Long and J. Z. Song,
Science Foundation of Jiangsu Province (BK20140951), Natural Chem.–Eur. J., 2011, 17, 689–696.
Science Foundation of Zhejiang Province (LQ16B020003), and 26 Y. R. Zhao, Q. Zheng, K. Dakin, K. Xu, M. L. Martinez and
Key University Science Research Project of Jiangsu Province
(Grant 16KJA180004).
W. H. Li, J. Am. Chem. Soc., 2004, 126, 4653–4663.
27 I. Aparici-Espert, M. C. Cuquerella, C. Paris, V. Lhiaubet-
Vallet and M. A. Miranda, Chem. Commun., 2016, 52,
14215–14218.
28 C. Wu, Q. N. Bian, B.-G. Zhang, X. Cai, S.-D. Zhang, H. Zheng,
S.-Y. Yang and Y.-B. Jiang, Org. Lett., 2012, 14, 4198–4201.
Notes and references
1 S. J. Singer and G. I. Nicolson, Science, 1972, 175, 720–731.
2 H. Lodish, A. Berk, S. L. Zipursky, P. Matsudaira, 29 V. Dujols, F. Ford and A. W. Czarnik, J. Am. Chem. Soc., 1997,
D. Baltimore and J. Darnell, Molecular Cell Biology,
Scientic American Books, New York, 4th edn, 2004.
119, 7386–7387.
31098 | RSC Adv., 2017, 7, 31093–31099
This journal is © The Royal Society of Chemistry 2017