S. Lopes et al. / Tetrahedron 67 (2011) 7794e7804
27. Kubota, N. J. Propul. Power 1995, 11, 677.
7803
xenon, N48, both obtained from Air Liquide) onto a CsI substrate
cooled to 10 K (for argon matrices) and 20 K (for xenon matrices). The
IR spectra were recorded with 0.5 cmꢁ1 spectral resolution in
a Mattson (Infinity 60AR Series) Fourier transform infrared spec-
trometer, equipped with a deuterated triglycine sulfate (DTGS) de-
tector and a Ge/KBr beam splitter. Necessary modifications of the
sample compartment of the spectrometer were done in order to
accommodate the cryostat head and allow purging of the instrument
by a stream of dry nitrogen, to remove water vapors and CO2.
Irradiation of the matrices was carried out with unfiltered light
from a 500 W Hg(Xe) lamp (Newport, Oriel Instruments), with
output power set to 200 W, through the outer KBr windows of the
28. Badgujar, D. M.; Talawar, M. B.; Asthana, S. N.; Mahulikar, P. P. J. Hazard. Mater.
2008, 151, 289.
29. L’ Abbe, G. Chem. Rev. 1969, 69, 345.
ꢀ
30. Hassner, A. In Azides and Nitrenes. Reactivity and Utility; Scriven, E. F. V., Ed.;
Academic: Orlando, 1984.
31. Platz, M. S. Acc. Chem. Res. 1995, 28, 487.
32. Wentrup, C. Top. Curr. Chem. 1976, 175.
33. Hassner, A.; Fowler, F. W. J. Am. Chem. Soc. 1968, 90,
2869.
34. Hassner, A.; Wiegand, N. H.; Gottlieb, H. E. J. Org. Chem. 1986, 51, 3176.
35. Morawietz, J.; Sander, W. J. Org. Chem. 1996, 61, 4351.
36. Dyke, J. M.; Levita, G.; Morris, A.; Ogden, J. S.; Dias, A. A.; Algarra, M.; Santos, J.
P.; Costa, M. L.; Rodrigues, P.; Barros, M. T. J. Phys. Chem. A 2004, 108, 5299.
37. Bock, H.; Damme1, R. J. Am. Chem. Soc. 1988, 110, 5261.
38. Gritsan, N. P. Russ. Chem. Rev. 2007, 76, 1139.
39. Pinho e Melo, T. M. V. D.; Lopes, C. S. J.; Cardoso, A. L.; d’A. Rocha Gonsalves, A.
M. Tetrahedron 2001, 57, 6203.
40. Lopes, S.; Nunes, C. M.; Fausto, R.; Pinho e Melo, T. M. V. D. J. Mol. Struct. 2009,
919, 47.
cryostat (l >235 nm).
Acknowledgements
41. Pinho e Melo, T. M. V. D.; Lopes, C. S. J.; d’A Rocha Gonsalves, A. M.; Storr, R. C.
Synthesis 2002, 5, 605.
These studies were partially funded by the Portuguese Science
Foundation (Project No. FCOMP-01-0124-FEDER-007458, cofunded
by QREN-COMPETE-UE), CYTED Program (Iberoamerican Program
for the Development of Science and Technology) [Network
108RT0362]. S.L. and C.M.N. acknowledge FCT for Grants No. SFRH/
BD/29698/2006 and SFRH/BD/28844/2006. A.G.Z. is member of the
Research Career, Conicet (National Research Council, Argentina).
42. Padwa, A.; Smolanoff, J.; Temper, A. J. Org. Chem. 1976, 41, 543.
43. Padwa, A.; Smolanoff, J.; Temper, A. J. Am. Chem. Soc. 1975, 97, 1945.
44. Isomura, K.; Ayabe, G.-I.; Hatano, S.; Taniguchi, H. J. Chem. Soc., Chem. Commun.
1980, 1252.
45. Wendling, L. A.; Bergman, R. G. J. Org. Chem. 1976, 41, 831.
46. Singh, B.; Zweig, A.; Gallivant, J. B. J. Am. Chem. Soc. 1972, 94, 1199.
47. Orton, E.; Collins, S. T.; Pimentel, G. C. J. Phys. Chem. 1986, 90, 6139.
48. Inui, H.; Murata, S. J. Am. Chem. Soc. 2005, 127, 2628.
49. Inui, H.; Murata, S. Chem. Lett. 2001, 30, 832.
ꢀ
50. Kaczor, A.; Gomez-Zavaglia, A.; Cardoso, A. L.; Pinho e Melo, T. M. V. D.; Fausto,
R. J. Phys. Chem. A 2006, 110, 10742.
51. Gomez-Zavaglia, A.; Kaczor, A.; Cardoso, A. L.; Pinho e Melo, T. M. V. D.; Fausto,
Supplementary data
ꢀ
R. J. Phys. Chem. A 2006, 110, 8081.
Additional figures with schematic schematic representations of
the four higher energy conformers of MACBP and the low energy
conformers of MBCAC and CBMK, predicted IR spectra for the three
conformers of MBCAC, CBMK and nitrile ylide, and spectral data
showing the observed in xenon matrix photochemistry are pro-
vided as Supplementary data. Also, tables with optimized geome-
tries, IR spectroscopic data of three most stable, experimentally
relevant conformers of MACBP (forms I, II and III), and Cartesian
coordinates and absolute energies for the relevant forms calculated
and discussed. Supplementary data associated with this article can
52. Bornemann, C.; Klessinger, M. Chem. Phys. 2000, 259, 263.
53. Klessinger, M.; Bornemann, C. J. Phys. Org. Chem. 2002, 15, 514.
54. Inui, H.; Murata, S. Chem. Commun. 2001, 1036.
55. Inui, H.; Murata, S. Chem. Phys. Lett. 2002, 359, 267.
56. Stewart, J. J. P. J. Comput. Chem. 1989, 10, 209.
57. Stewart, J. J. P. J. Comput. Chem. 1989, 10, 221.
58. HyperChem Conformational Search module Tools for Molecular Modeling;
Hypercube: 1115 NW 4th St., Gainesville, FL 32608 (USA), 2002.
59. Saunders, M. J. Am. Chem. Soc. 1987, 109, 3150.
60. Saunders, M.; Houk, K. N.; Wu, Y.-D.; Still, W. C.; Lipton, J. M.; Chang, G.; Guidal,
W. C. J. Am. Chem. Soc. 1990, 112, 1419.
61. Howard, A. E.; Kollman, P. A. J. Med. Chem. 1988, 31, 1669.
62. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J.
R.; Montgomery, J. A., Jr.;Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar,
S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Pe-
tersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa,
J.;Ishida,M.;Nakajima, T.;Honda,Y.;Kitao,O.;Nakai, H.;Klene, M.;Li, X.;Knox,J.E.;
Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.;
Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.;
Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V.
G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.;
Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.;
Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.;
Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.;
Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.;
Pople, J. A. Gaussian 03, revision C.02; Gaussian: Wallingford, CT, 2004.
63. Frisch, M.; Head-Gordon, M.; Pople, J. A. Chem. Phys. Lett. 1990, 166, 281.
64. Becke, A. D. Phys. Rev. A 1988, 38, 3098.
References and notes
€
1. Organic Azides, Syntheses and Applications; Brase, S., Baneet, K., Eds.; John Wiley:
UK, 2010.
2. The Chemistry of the Azido Group; Patai, S., Ed.; Wiley: New York, NY, 1971.
3. Scriven, E. F. V.; Turnbull, K. Chem. Rev. 1988, 88, 297.
€
4. Brase, S.; Gil, C.; Knepper, K.; Zimmerman, V. Angew. Chem., Int. Ed. 2005, 44, 5188.
5. Fotsing, J. R.; Banert, K. Synthesis 2006, 2, 261.
6. Maurus, R.;Bogumil,R.;Nguyen, N.T.;Mauk,A.G.;Brayer,G.Biochem. J.1998, 332,67.
€
7. Canalle, L. A.; Lowik, D. W. P. M.; Hest, J. C. M. Chem. Soc. Rev. 2010, 39, 329.
8. Pathak, T. Chem. Rev. 2002, 102, 1623.
9. Greenberg, W. A.; Priestley, E. S.; Sears, P. S.; Alper, P. B.; Rosenbohm, C.;
Hendrix, M.; Hung, S.-C.; Wong, C.-H. J. Am. Chem. Soc. 1999, 121, 6527.
10. Hein, C. D.; Liu, X.-M.; Wang, D. Pharm. Res. 2008, 25, 2216.
11. Colombo, M.; Peretto, I. Drug Discovery Today 2008, 13, 678.
12. Reddy, N. N.; Mohan, Y. M.; Varaprasad, K.; Ravindra, S.; Vimala, K.; Raju, K. M. J.
Appl. Polym. Sci. 2010, 115, 1589.
65. Lee, C. T.; Yang, W. T.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
ꢀ
ꢀ
66. Csaszar, P.; Pulay, P. J. Mol. Struct. 1984, 114, 31.
€
67. Farkas, O; Schlegel, H. B. J. Chem. Phys. 1999, 111, 10806.
68. Peng, C.; Schlegel, H. B. Isr. J. Chem. 1994, 33, 449.
69. Schachtschneider, J. H.; Mortimer, F. S. Vibrational Analysis of Polyatomic
Molecules. VI. FORTRAN IV Programs for Solving the Vibrational Secular
Equation and for the Least-Squares Refinement of Force Constants. Report No.
31450. Structural Interpretation of Spectra, Technical Report no 57-650, Shell
Development. Emeryville, CA, 1969.
70. Pulay, P.; Fogarasi, G.; Pang, F.; Boggs, J. E. J. Am. Chem. Soc. 1979, 110, 2550.
71. Fausto, R.; Teixeira-Dias, J. J. C. J. Mol. Struct. 1986, 144, 215.
72. Fausto, R.; Teixeira-Dias, J. J. C. J. Mol. Struct. 1986, 144, 225.
73. Fausto, R.; Teixeira-Dias, J. J. C. J. Mol. Struct. 1986, 144, 241.
74. Cioslowski, J. J. Am. Chem. Soc. 1989, 111, 8333.
13. Lakshmi, S.; Kumar, S. S.; Jayakrishnan, A. J. Biomed. Mater. Res. 2002, 61, 26.
ꢀ
14. Najera, C.; Sansano, J. M. Org. Biomol. Chem. 2009, 7, 4567.
15. Huisgen, R. In 1,3-Dipolar Cycloaddition Chemistry; Padwa, A., Ed.; Wiley: New
York, NY, 1984; Vol. 1, pp 1e176.
16. Lutz, J.-F. Angew. Chem., Int. Ed. 2007, 46, 1018.
17. Binder, W. H.; Sachsenhofer, R. Macromol. Rapid Commun. 2008, 29, 952.
18. Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V. V.; Noodleman, L.; Sharpless, K. B.;
Fokin, V. V. J. Am. Chem. Soc. 2005, 127, 210.
19. Nulwala, H.; Burke, D. J.; Khan, A.; Serrano, A.; Hawker, C. J. Macromolecules
2010, 43, 5474.
20. Dabbagh, A. H.; Mansoori, Y. Dyes Pigm. 2002, 54, 37.
21. Yan, M.; Cai, S. X.; Wybourne, M. N.; Keana, J. F. W. J. Am. Chem. Soc.1993, 115, 814.
22. Nahar, P.; Wali, N. M.; Gandhi, R. P. Anal. Biochem. 2001, 294, 148.
23. Cai, S. X.; Glenn, D. J.; Kanskar, M.; Wybourne, M. N.; Keana, J. F. W. Chem. Mater.
1994, 6, 1822.
24. Tattersall, P. I.; Breslin, D.; Grayson, S. M.; Heath, W. H.; Lou, K.; McAdams, C. L.;
McKean, D.; Rathsack, B. M.; Willson, C. G. Chem. Mater. 2004, 16, 1770.
25. Fleming, S. A. Tetrahedron 1995, 51, 12479.
75. Barnes, A. J. J. Mol. Struct. 1984, 113, 161.
76. Reva, I. D.; Stepanian, S. G.; Adamowicz, L.; Fausto, R. Chem. Phys. Lett. 2003, 374,
631.
ꢀ
77. Gomez-Zavaglia, A.; Fausto, R. J. Mol. Struct. 2004, 689, 199.
ꢀ
~
78. Borba, A.; Gomez-Zavaglia, A.; Simoes, P. N. N. L.; Fausto, R. J. Phys. Chem. A
2005, 109, 3578.
79. Rosado, M. T. S.; Lopes de Jesus, A. J.; Reva, I. D.; Fausto, R.; Redinha, J. S. J. Phys.
Chem. A 2009, 133, 7499.
80. Reva, I. D.; Lopes de Jesus, A. J.; Rosado, M. T. S.; Fausto, R.; EusUbio, M. E.;
ꢁ
26. Ballell, L.; Alink, K. J.; Slijper, M.; Versluis, C.; Liskamp, R. M. J.; Pieters, R. J.
ChemBioChem 2005, 6, 291.
Redinha, J. S. Phys. Chem. Chem. Phys. 2006, 8, 5339.